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Abstract

This paper addresses a number of issues that arise in the course of sta-
tistical consulting and statistical computing in biopharmaceutical research.
For example, there are many basic problems in how lab measurements are
quantified and analyzed, many of which involve subconscious decisions by
analysts that should be critically examined. Some suggestions and personal
observations are made.

1 Measurement Issues in Basic Lab Data

Standards often exist for metrics on which laboratory measurements are
encoded, but it is not necessary and often is not preferable to analyze the
measurements on this same metric. For example, log and reciprocal trans-
formations are often used during basic analyses. When effects or changes
are of interest, the analysis becomes more dependent on the choice of met-
ric. Even if the optimum metric for measurements obtained under a single
experimental condition is already known, the optimum measure of change
in such measurements remains highly problematic.
∗Presented in part at the SmithKline Beecham Biometrics Advisory Board Meeting 30

November – 1 December 2000
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Researchers seem especially eager to use ratios as measures of change
or effect, but ratios have a number of problems 4, 6, 13. Unlike differences
or log ratios, ratios are asymmetric, that is, one obtains different results
depending on which measurement is placed in the denominator. Then there
is the problem of data origin. Should something be subtracted from the
denominator? Most researchers act as if zero is the only choice. Also, ratios
have strange distributions. Kronmal8 cited many problems with using ratios
in statistical modeling:

1. There will be spurious correlations in using ratio variables even if all
component variables of ratios are uncorrelated.

2. Division of only the dependent variable by an independent variable
can result in regression coefficient estimates for the other independent
variables that lead to inappropriate conclusions.

3. Use of a ratio as an independent variable can result in inadequate
adjustment for component variables of the ratio.

4. Results of regression analyses incorporating ratios are not readily com-
parable across studies with different distributions.

Kronmal found that ratio variables should only be used in a full model con-
taining all the component variables. However his paper assumes throughout
that a linear model and not a multiplicative one is the correct model. Kaiser6

states that whatever effect measure is chosen (ratio, difference, etc.) should
be demonstrated to be uncorrelated with the base value

2 Special Measurement Issues in Assay and Mi-
croarray Data

Assays frequently result in several observations being below the lower limit
of detectability (LLD). When computing mean values and other statistics,
researchers often replace such values with a value that is lower than all “real”
values. This is better than eliminating samples, but is arbitrary, especially if
using parametric statistical methods (rank-based analyses are less affected).
For parametric analysis it may be preferable to treat values below the LLD
as being left censored.

Microarray data has its own special problems. For example, Wikman
et al.15 found that the Affymetrix p53 Genechip’s 1464 positions have their
own unique noise and threshold characteristics.
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Note that the practice of using geometric means to reduce the influence
of extremely high values causes as many problems as it solves. Very low
values become outliers once logs are taken, and an origin of zero is implicitly
assumed by geometric means.

3 Problems with Safety Assessments using Clini-
cal Lab Data

It is common in safety analyses to report the proportion of patients with a
lab value > 3× upper limit of normal. This results in a loss of information
from continuous variables. Also, patients who were “almost abnormal” at
baseline will have an easy time moving to the abnormal category.

If one wishes to analyze lab values as continuous variables, a different is-
sue must be tackled. Many lab parameters have non-monotonic relationships
with patient risk. For example, the “normal range” for a parameter may be
in the middle of its distribution. There is a need to treat lab values as contin-
uous variables without allowing abnormally low values to cancel abnormally
high values. In some cases it will be powerful and more interpretable to
transform measurements to a scale for which “abnormality points” can be
added, e.g., predicted log odds of short-term mortality, log hazard rate, or
predicted log survival time. To obtain these clinical outcome–based trans-
formations extensive databases are required. An example of risk scoring of
physiologic variables is shown in Figure 1.

4 Strategies That are “Correct Enough”

A question that arises frequently in statistical consulting is “I know that this
analytic method is imperfect, but is it good enough?” For example, one may
suspect that there is heteroscedasticity in a regression analysis in which the
response variable Y is transformed in some traditional way. Should weighted
least squares be used, or is it not worth the trouble? I prefer to change the
question to recognize that there is often no obvious metric to choose for the
response variable, unless there is a single predictor variable that uses the
same metric as the response. Solving for an “optimal” transformation of Y
may be made a formal part of the modeling process.

In many cases there will be a transformation that results in homoscedas-
ticity and in an improved R2 using unweighted least squares. A good pro-
cedure is Tibshirani’s12 AVAS (additive model with variance stabilization)
algorithm. This is a nonparametric transform–both–sides procedure whose
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Figure 1: Risk scoring of physiologic variables in the SUPPORT study7. Y -axis
values represent predicted log hazard of death from a Cox model in which regression
effects were modeled flexibly using restricted cubic spline functions.
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goal in transforming Y is to make the variances of residuals independent
of Ŷ and whose goal in transforming the Xs is to maximize R2. Boot-
strapping can be used to obtain standard errors of estimates and confidence
bands, taking into account the uncertainty in all the transformations. This
solves a problem that is seldom admitted by statisticians: when multiple Y
transforms are tried, there is a large inflation in regression estimates once
variances are computed correctly3 (e.g., by bootstrapping). Most statisti-
cians compute variances that are conditional on the Y -transform. Ordinary
variance estimates are biased low because of unaccounted for model uncer-
tainty.

To complete the process of semiparametric estimation using flexible
nonparametric transformations, Duan’s smearing estimator 2 can be used
to obtain predicted means on the original untransformed scale. All as-
pects of these calculations including bootstrap confidence bands have been
automated in the S-Plus and R function areg.boot written by the au-
thor (see http://hesweb1.med.virginia.edu/biostat/presentations/

feh/ichpr99/slide.pdf for details).
When only two variables are being analyzed at a time and only a P -

value is needed, the most robust approach is to use rank tests and rank
correlation coefficients. When multiple Xs are present, robust rank-based
regression (e.g., Cox and proportional odds models) is worth considering.
Methods based on ranks are efficient for assessing associations,1 and they
are robust to outliers and strange data distributions. They are somewhat
robust to heteroscedasticity.

5 Bayesian Methods in Drug Discovery and Dose
Response Assessment

Various multiplicity adjustment techniques have been developed for analy-
sis of microarray and other large-scale screening data, as well as for more
standard analyses of multiple treatments and multiple doses. Bayesian prior
distributions are usually a better way to deal with multiplicity. One can in-
corporate prior distributions for the chances that a biomarker is an efficacy
marker or for probability of monotonicity of dose-response. Formal Bayesian
decision analysis that incorporates costs of false positives and false negatives
is also an area worth pursuing. Bayesian methods have small-sample exact-
ness without conditioning on only part of the data. It takes more time to

1One of the best kept secrets in statistics seems to be the 0.96 relative efficiency of the
Wilcoxon test compared with the t-test when all assumptions of the t-test are satisfied.
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be a Bayesian than be a traditional statistician, so once researchers see the
advantages of the Bayesian paradigm, a shift to this paradigm will result in
more close involvement of statisticians with researchers.

6 Dealing with Discrete Data

Statisticians have a variety of tools for dealing with continuous response
data. When truly discrete data arise, such as event times in current status
data in which assessments of the presence of a condition are made only, say,
monthly, it is best to use statistical models that were specially developed
to handle discrete responses. For event time data, the Prentice-Gloeckner11

model will handle heavily tied data. Occasionally it is also a good approach
to use a continuous method, such as the ordinary Cox partial likelihood
approach, with random breaking of ties in the data.

7 Competition from Software / Statistical Knowl-
edge Dissemination

A big problem facing every data-rich research operation is that there are not
enough statisticians to meet current demands for data analysis. As a result,
researchers are choosing (poorly) analytic software such as Excel, teaching
themselves how to use it, and are analyzing their own data. Researchers are
not aware of severe computational errors in software such as Excel (see http:
//hesweb1.med.virginia.edu/biostat/teaching/shortcourse/excel.hazards.

txt).
Statistics sections in companies and academia should consider putting

out a newletter containing guidelines for choosing statistical software. An
ongoing short course series (e.g., Statistical Thinking in Biomedical Research—
see http://hesweb1.med.virginia.edu/biostat/teaching/handouts.html)
emphasizing study design, bias, measurement, precision, power, graphics,
and demonstrations (“what a statistician does with data”) can also have
a great benefit on statistician / biological researcher interaction. Clients
should know almost as much about statistics as we know about biology.

7



8 Web-Based Computing as a Statistician Exten-
der

Pikounis, Gunter, et al. of Merck Research Labs 10 have had to face the
formidable problem of supporting 3000 scientists with 10 statisticians. They
are starting to solve some of the problem by developing web-based statis-
tical applications tailored to the needs of these researchers. Much of their
applications involve drug discovery. Pikounis et al. propose having web-
based statistician extendors practice “safe statistics”. They use the S-Plus
StatServer to implement strategies that

• “Produce useful answers ‘most’ of the time

• Indicate where answers may not be useful

• Have ‘adequate’ performance

• Handle missing values and other data problems

• Are tuned to user skill level

In practice this means

• Graphics

• Well designed user interface

• Resistant methods

• Fewest assumptions possible (nonparametric procedures)

• Use of subject matter knowledge whenever possible”

A big advantage to this approach as compared with the epidemic of use
of Excel and other packages by non-statistician researchers is that statis-
ticians can control which methods are distributed or emphasized to non-
statisticians, assuming they spend significant up-front efforts in gathering
input from potential users.

The Merck S-Plus High Throughput Screening (HTS) StatServer is Web
based and requires no special client software. It is set up to handle 96–3456
well plates for HTS assays in drug discovery. It takes into account positional
effects within plates (esp. edge effects), changing background response and
assay sensitivity, trends, cycles, shifts, and missing values. The software
allows drilling down after potential problems are seen (e.g., analysis by rows
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or by columns). It is heavy on graphics and nonparametric trends. An
important feature of the software is that error messages to users are also
E-mailed to statisticians. Detailed usage accounting data are stored and
analyzed.

9 S-Plus vs. SAS

After SAS 8 replaces the default of SAS 6 at most companies, and after a few
more bugs are solved (e.g., fully implementing downward compatible export
of SAS V8 datasets), SAS version 8 will provide a number of advantages to
users. Before SAS Version 8 began being distributed in production mode, I
estimated that S-Plus was about eight years ahead of SAS in its analytic
capabilities. The gap has now been narrowed to about five years. My
opinion is that S-Plus (and R—see the next section) will continue to provide
much greater analytic capabilities to the modern statistician than SAS will
provide. SAS excels in providing solid procedures for very frequently used
methods but it cannot provide the breadth of statistical computing tools
to handle the great variety of problems seen in biomedical research. More
importantly, the SAS batch procedure–oriented model is cumbersome and
inflexible.

Some of the fundamental advantages of S-Plus include the following.

1. There is no distinction between DATA and PROC steps.

2. S-Plus has no macro language; all commands are “live”. For example,
the following S language command will compute frequency tables for
discrete variables or quantiles for continuous ones without being told
anything about the variable by the user:

if(is.category(x) | is.character(x) | length(unique(x)) < 20)

table(x) else quantile(x)

3. S-Plus has many more data types than SAS, and users can add their
own attributes to data (e.g., flag strange or imputed values).

4. S-Plus is truly interactive, not batch oriented.

5. S-Plus has vastly superior graphics.

6. S-Plus 2000 comes with 2900 functions.
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7. The S language is extendible and relatively simple to program; user-
written functions are written in the same language used by the devel-
opers; statisticians world-wide are writing S functions. SAS modules
written by users are typically written in the SAS macro language, a
preprocessing language seldom used by developers at SAS Institute.

8. Modern statistical methods may be implemented quite quickly in S
(see Statlib (lib.stat.cmu.edu) for many examples).

9. S-Plus has many methods for modeling, exploratory data analysis,
missing data, graphics after model fitting, bootstrapping, advanced
table making, etc.14

10. SAS has an Output Delivery System (ODS) for saving and customized
formatting of the results of statistical (and other) procedures. S-Plus
has no need for an ODS because:

• All entities are objects, allowing all functions to communicate
their results directly.

• It is easy to write special methods for formatting output, e.g.:

# create LATEX table (can also use HTML)

latex(summary(marker ∼ age+sex))

# logistic regression model with regression splines, interactions

f ← lrm(y ∼ rcs(age,5)*sex +

rcs(pressure,4))

f # ordinary printout

plot(f) # show fitted shapes

Function(f) # create S+ function to compute y-hat

sascode(Function(f)) # SAS code for y-hat

# typeset fit in algebraic form

w ← latex(f)

html(w) # convert LATEX to HTML

# future: convert to XML with embedded MathML:

xml(f)

The examples above show how results of analyses can be converted to var-
ious representations under complete control of the user. In the future spe-
cial XML methods for S objects will become important (see http://www.

omegahat.org).
The following example shows how more powerful user control can result

in advanced, clearly formatted tables. A typesetting language such as LATEX
allows fine control of fonts, superscripting, subscripting, etc. The summary
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method for S formulas, in Harrell’s Hmisc library, will create three types
of tables using appropriate stratifications. The example that follows shows
how a “baseline characteristics” table stratified by treatment is created for
a clinical trial (Using the Mayo Clinic PBC dataset). The object s contains
the data summaries. It can be printed using ordinary output, plotted, or
typeset using the latex function in Hmisc as was done below. Note that
the statistics being emphasized (medians and percents) are in a larger bold
font, and subsidiary information such as outer percentiles, numerators, and
denominators appear in smaller nonbold fonts.

s ← summary(drug ∼ bili + albumin +

stage + protime + sex + age +

spiders, method=’reverse’)

latex(s, npct=’both’)

N D-penicillamine (N = 154) placebo (N = 158)

Serum Bilirubin (mg/dl) 418 0.725 1.300 3.600 0.800 1.400 3.200

Albumin (gm/dl) 418 3.34 3.54 3.78 3.21 3.56 3.83

Histologic Stage, Ludwig Criteria : 1 412 3% 4
154

8% 12
158

2 21% 32
154

22% 35
158

3 42% 64
154

35% 56
158

4 35% 54
154

35% 55
158

Prothrombin Time (sec.) 416 10.0 10.6 11.4 10.0 10.6 11.0

Sex : female 418 90% 139
154

87% 137
158

Age 418 41.4 48.1 55.8 43.0 51.9 58.9

Spiders 312 29% 45
154

28% 45
158

a b c represent the lower quartile a, the median b, and the upper quartile c
for continuous variables.
N is the number of non–missing values.

S-Plus, augmented by the Hmisc and Design libraries, has many easy to
use graphics capabilities that are very difficult to implement in SAS. Seven
examples follow.
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Figure 2: Empirical cumulative distribution plots for continuous variables stratified
by treatment. Produced by the ecdf function.
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Figure 3: Three quartiles of glycosolated hemoglobin, stratified separately by a cate-
gorical variable (gender) and automatically by quartiles of continuous baseline vari-
ables. Produced by the summary function.
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summary.
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Figure 5: Trellis multipanel display of sensitivity and specificity of various ques-
tions, further stratified by sex of respondent. Produced by Dotplot.
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Figure 6: Extended box plots showing 25%, 50%, 75%, and 90% intervals in addition
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the interquartile range. Produced using bwplot(..., panel=panel.bpplot).
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Figure 8: Nomogram for manually computing the absolute reduction in 30-day mor-
tality by t-PA over streptokinase for patients with acute myocardial infarction in the
GUSTO-I trial1. Produced by the Design library’s nomogram function.
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pbc
19 Variables 418 Observations

bili : Serum Bilirubin (mg/dl)

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
418 0 98 3.221 0.50 0.60 0.80 1.40 3.40 8.03 14.00

lowest : 0.3 0.4 0.5 0.6 0.7, highest: 21.6 22.5 24.5 25.5 28.0

albumin : Albumin (gm/dl)

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
418 0 154 3.497 2.750 2.967 3.243 3.530 3.770 4.010 4.141

lowest : 1.96 2.10 2.23 2.27 2.31, highest: 4.30 4.38 4.40 4.52 4.64

stage : Histologic Stage, Ludwig Criteria

n missing unique Mean
412 6 4 3.024

1 (21, 5%), 2 (92, 22%), 3 (155, 38%), 4 (144, 35%)

protime : Prothrombin Time (sec.)

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
416 2 48 10.73 9.60 9.80 10.00 10.60 11.10 12.00 12.45

lowest : 9.0 9.1 9.2 9.3 9.4, highest: 13.8 14.1 15.2 17.1 18.0

sex : Sex

n missing unique
418 0 2

male (44, 11%), female (374, 89%)

fu.days : Time to Death or Liver Transplantation

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
418 0 399 1918 245.1 606.8 1092.8 1730.0 2613.5 3524.2 4040.6

lowest : 41 43 51 71 77, highest: 4500 4509 4523 4556 4795

age : Age

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
418 0 345 50.74 33.84 36.37 42.83 51.00 58.24 64.30 67.92

lowest : 26.28 28.88 29.56 30.28 30.57
highest: 74.52 75.00 75.01 76.71 78.44

spiders : Spiders

n missing unique
312 106 2

absent (222, 71%), present (90, 29%)

1
Figure 9: Mixing text and graphics. Descriptive statistics combined with histograms
of continuous variables. Produced by latex(describe(datasetname)).
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10 Open Source Statistical Computing

A major development in computing since 1991 is the rapid release of oper-
ating systems (e.g., Linux) and application software by the Internet-based
open source community9. Highly skilled programmers are developing all
types of freely available software that is also open source, meaning that any
user can see all of the source code and can modify it for their own purposes
as long as they are willing to give back any improvements to the originator
of the program. The Internet has allowed clusters of geographically sep-
arated programmers to work cooperatively to develop the highest quality
code. These “hackers” are motivated by a desire to produce code that is far
superior to that written by Microsoft, by pride in writing the most efficient,
reliable, and elegant code, and by a desire for fame instead of money. A
major result of this revolution is that developers obtain rapid feedback from
growing communities of users, and they rapidly correct errors and make en-
hancements that are popular with actual users. The overall quality of this
chaotic system of software development has in the past two years exceeded
the quality of expensive commercial software in many areas.2 One obvious
advantage of the open approach is that users need not wait for yearly update
cycles of commercial vendors for errors to be corrected. It is not uncommon
for open source software to issue two new versions on the same day.

I removed Microsoft 2000 from my office computer in the fall of 2000
after finding that it was slow and did not run several of my applications
correctly. I installed RedHat Linux, and estimate that my personal produc-
tivity has increased about 10% even after adjusting for the Linux learning
curve. Future productivity will be greater. I have gone from rebooting the
computer almost every day to rebooting every two months.

It was only a matter of time before serious open source statistical com-
puting systems became viable options for the statistician. The R system5

(www.r-project.org), an open source version of the S language upon which
S-Plus is based, began to mature around 2000 and now has a wide follow-
ing, particular in other countries where S-Plus is very expensive. R lacks
the Microsoft Office interface of S-Plus, the ability to import and export
some databases and graphics, and it lacks a graphical user interface and
trellis multipanel graphics, but otherwise one can do most everything in R
that one can do in S-Plus. R’s documentation files are more logically de-
signed than those in S-Plus, and R has builtin functions for installing or

2For example, the most widely used Web server is now the open source APACHE
server.
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updating add-on packages from the Internet. Ironically by the developers
of R being much more aggressive in making changes to the system (while
being responsive to users), R has become as or more reliable as S-Plus. R
is particularly well suited for Web application development as there are no
licensing issues.

The open source nature of R is important in a regulatory environment,
as statisticians can examine 100% of its source code when in doubt about a
calculation.
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