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Choosing the Model

• To satisfy distributional assumptions so that CLs, P -values will be

accurate

• To minimize lack of fit, make predictions more accurate

• Could choose a model to minimize complexity (especially interactions)

• Can’t compare models on the basis of what was used to optimize one

of them (R2, SSE)

• Hard to compare R2 from models for cost and log(cost)

• Rank correlations and robust error measures can be useful

• In upcoming example, Spearman ρ for cost model is 0.66, and is 0.67

for log(cost) model

• Median absolute difference between predicted and observed costs is
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$19,300 and $8,000 respectively

Slide 4

Difficulties with Parametric Models

• β̂ sensitive to outliers

• Finding the best transformation of Y

• Estimating E[Y |X] on original scale

• If derive CLs, P –values as if the Y –transformation is pre–specified,

inference is overconfident (Faraway, 1992 [3])
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Advantages of Estimating Y –Transform

• Make estimation of Y –transform g part of the process

• If a programmable algorithm, can use the bootstrap to account for

uncertainty in g (re–estimate g at each re–sample)

• Results in honest coverage probabilities, P –values
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Cox Modela

• Prob[Y > c|X] = S(c|X) = S0(c)
exp(Xβ)

• S0(·) estimated from the data

• β̂ invariant to transformations on Y , robust to outliers

• Ŝ(c|X) = Ŝ0(c)
exp(Xβ̂)

• Quantile q of Y |X : Ŝ−1(q)

• Estimate of mean: area under Ŝ

• Can handle right–censored costs but need to take into account
aSee [2], hesweb1.med.virginia.edu/biostat/teaching/

hpstat95.pdf,

hesweb1.med.virginia.edu/biostat/presentations/dia.

econ97.pdf.
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informative censoring when censoring is on time and not $ scale (no

literature yet)
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AVAS

• Tibshirani (1988) additivity and variance stabilization (AVAS) [8] [7, pp.

236-242]

g(Y |X = x) = f1(x1) + f2(x2) + . . . + fp(xp) + ε

• Fitting criteria: maximize R2 while forcing Y –transform (monotonic) to

result in nearly constant variance of residuals.

• Transformations are nonparametric (Friedman’s super smoother [4])

• Estimating transformations for a number of variables will inflate R2;

use Efron bootstrap optimism estimator [6] to correct
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Smearing Estimator

• Duan 1983 [1]

• Estimated Y –transform ĝ

• Residuals on transformed scale: e1, e2, . . . , en

• Predicted g(Y ) : a = Xβ̂

• Statistical parameter of interest: θ, e.g. E[Y |X]

• Function of a vector of data that estimates this parameter: W

• Smearing estimator for θ: θ̂ =

W (ĝ−1(a + e1), ĝ
−1(a + e2), . . . , ĝ

−1(a + en))

• For AVAS nonparametric transformation ĝ use inverse linear

interpolation to obtain ĝ−1(·)
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Bootstrap for CLs of Estimated Effects

• Nonparametric bootstrap to get pointwise CLs for transformations of

each variable

• Effect of changing one predictor, holding others constant:

Use ordinary bootstrap to estimate SD of difference in two smearing

estimates (for two values of X), assuming normality of such

differences
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S-PLUS and R Functions for AVAS / Bootstrap

In Hmisc library [5]. Basic avas function by Tibshirani is built–in to

S-PLUS, is in R mva package.

f ← areg.boot(Y ∼ monotone(age) +

sex + weight)

plot(f) # show transformations, CLs

Function(f) # generate S-PLUS/R functions

# defining transformations

predict(f) # get predictions,

# smearing etimates

summary(f) # compute CLs on effects of

# each X

smearingEst() # generalized smearing

# estimators
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Mean(f) # derive S-PLUS/R function to

# compute smearing mean Y

Quantile(f) # derive S-PLUS/R function to

# compute smearing quantile
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Example

• Prediction of hospital costs for 894 patients in SUPPORT (Study to

Understand Prognoses Preferences Outcomes and Risks of

Treatments)

(hesweb1.med.virginia.edu/biostat/s/data)

• Predictors: age, SUPPORT coma score, disease group (8 levels),

mean arterial blood pressure

f.areg ← areg.boot(totcst ∼

dzgroup + scoma + meanbp + age)

• Apparent R2 = 0.43; bootstrap overfitting–corrected R2 = 0.41
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AVAS: Estimated Transformations
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Figure 1: Estimated transformations from AVAS, with pointwise 0.95 CLs computed

by areg.boot
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Estimates of Effects of Predictors

summary(f.areg,

values=list(scoma=c(0,44),

meanbp=c(90,20,60,130)))
Values to which predictors are set when estimating

effects of other predictors:

totcst dzgroup scoma meanbp age

15.1 4.5 22 75 64.9

Estimates of differences of effects on Median Y (from first X value),

and bootstrap standard errors of these differences.

Settings for X are shown as row headings.

Predictor: dzgroup

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

ARF/MOSF w/Sepsis 0.00 NA NA NA NA NA

COPD -20.17 4.15 -28.3 -12.04 -4.87 1.14e-006

CHF -23.23 4.18 -31.4 -15.04 -5.56 2.73e-008

Cirrhosis -21.00 4.49 -29.8 -12.21 -4.68 2.87e-006

Coma -22.92 5.54 -33.8 -12.06 -4.14 3.54e-005

Colon Cancer -24.73 4.63 -33.8 -15.65 -5.34 9.29e-008

Lung Cancer -25.23 4.34 -33.7 -16.72 -5.81 6.33e-009

MOSF w/Malig -4.75 3.48 -11.6 2.07 -1.37 1.72e-001

9



Slide 17

Predictor: scoma

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

0 0.00 NA NA NA NA NA

44 5.27 1.8 1.75 8.79 2.93 0.00334

Predictor: meanbp

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

90 0.00 NA NA NA NA NA

20 -2.78 6.56 -15.647 10.1 -0.424 0.67187

60 5.21 2.74 -0.158 10.6 1.902 0.05713

130 8.29 2.96 2.477 14.1 2.796 0.00518

Predictor: age

Differences S.E Lower 0.95 Upper 0.95 Z Pr(|Z|)

52.10 0.000 NA NA NA NA NA

64.90 -0.898 0.671 -2.21 0.417 -1.34 0.1806

74.66 -2.034 0.938 -3.87 -0.195 -2.17 0.0302
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AVAS Residuals
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Predicted Transformed Cost
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Figure 2: Left panel: residuals from AVAS fit against predicted transformed Y .

Right panel: q–q plot of residuals against the normal distribution.
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Figure 3: Means and ±2 standard deviations of residuals from AVAS (left panel)

and OLS on log cost (right panel), after stratifying predicted mean costs into inter-

vals containing an average of 80 patients. Residuals were first scaled to have over-

all standard deviations of 1.0 for both models. Both models appear to be equally

variance stabilizing. There is a slight lack of fit of the log OLS model for very small

predicted mean costs.
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AVAS Nomogram
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Figure 4: Nomogram for predicting median and mean hospital cost for an individual

patient.
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Comparison of Methods
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Mean Arterial BP
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Figure 5: Comparison of methods in predicting mean and median cost as a function of mean arterial blood pressure, for AVAS,

ordinary least squares (OLS) on log cost, and the Cox model on the original cost scale. The rug plot at the top of the graph shows the data

distribution for mean blood pressure. For AVAS, smearing estimators are used. For OLS based on log cost, the log–normal distribution

is used so that the MLE of the estimated mean cost is exp(µ̂ + 1

2
σ̂2). In addition, Ŷ is presented on the original scale for an

OLS model using that scale (shown as dots; note the scant data for b.p. < 35). This is a direct but non–robust estimate of the mean

assuming no interactions.
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Figure 6: Plots of means of predicted mean costs vs. mean observed costs, by intervals of predicted costs containing an average

of 40 subjects. The line of identity is shown. Dotted lines depict outer quartiles of observed costs within the intervals. Note the systematic

error for low predicted mean costs for OLS done on the original cost scale. The other three methods appear equally good. The minimum

Spearman ρ between any two predicted means was 0.97.
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• Spearman ρ for predicted mean cost vs. actual cost in individual

patients is 0.66, 0.69, 0.67, 0.68 for OLS, log OLS, AVAS, and Cox,

respectively.
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Abstract
Cost and other health resource utilization measures such length of hospital stay have strongly skewed

distributions that make robust estimation of patient and provider effects difficult. The robust

semi-parametric Cox proportional hazards model has been shown to have advantages for modeling

hospital cost (Dudley et al. 1993 [2]). Ordinary least squares, a commonly used older approach, can

perform well if the response variable has been suitably transformed and if appropriate non-linear and

non-additive effects are allowed for the predictors. However, if one has to do exploratory analyses to

determine the response transformation, variances of parameter estimates are no longer appropriate

(Faraway 1992 [3]). This argues for making the determination of the transformation of the response to

be an explicit part of the modeling process so that the bootstrap can be used to estimate variances

correctly. Tibshirani’s AVAS method [8] is a kind of generalized additive model in which the predictors

are nonparametrically transformed to optimize R2 and the response is nonparametrically transformed

to stabilize variances of residuals. This talk will show how the AVAS approach can be extended to

allow estimation of mean (using Duan’s smearing estimator [1] and median cost given predictors, and

how the bootstrap can be used to obtain confidence intervals for effects, taking all modeling steps into

account. A fitted AVAS model will be compared to a Cox model for health care costs.
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