Use of the Cox Semiparametric Regression
Model for Predicting Costs, Charges, and
Length of Stay

Frank E. Harrell Jr
L. Richard Smith
Division of Biometry and the Heart Center
Duke University Medical Center
Box 3363 Durham NC 27710 USA
feh@biostat.mc.duke.edu, lrs@biostat.mc.duke.edu

Short Course
Methodologic Issues in Health Services and Outcomes Research
Boston MA

3 December 1995

Copyright 1995 All Rights Reserved

Contents

Problems with Traditional Ways of Model-
ing Resource Utilization

1 Multiple Linear Regression

2 Linear Regression on Transformed Y

3 Binary Logistic Regression for High Out-
liers

4 Problems with Interrupted Observation

General Regression Models

1 Introduction and Notation

2 Model Formulations

3 Interpreting Model Parameters

4 Relaxing Linearity Assumption for Contin-




uous Predictors 7
Steps of One Possible Modeling Strategy 14
Censored Data 17
Background 17
Notation, Survival and Hazard Functions 18

Homogeneous Distributions (No Case-Mix
Adjustment) 21

Nonparametric Estimation of S 21
Proportional Hazards Regression Model 24

Allowing for Covariables through Multiplica-
tive Hazards Effects 24

Cox Model 27

Estimation of (3 30

Estimation of Survival Probability and Sec-

ondary Parameters 31
Residuals 33
Assessment of Model Fit 33
What to Do When PH Fails 39
Quantifying Predictive Ability 40

Validation of Discrimination and Other Sta-

tistical Indexes 40
10 Describing the Fitted Model 41
Case Study 43
Bibliography 59

iii




Course Philosophy

e Commonly used methods such as linear re-
gression and log-linear regression often do
not fit health—care resource consumption data

e A technique that is robust (based on ranks of
V) for modeling regression (case-mix) effects
is advantageous

e A technique with fewer distributional assump-
tions has advantages such as not assuming a
mathematical connection between predicted
mean and median costs

e Assumptions about transformations of X can
be checked using usual regression methods
(regression splines, residual plots)

e Graphical techniques coupled with formal sta-
tistical tests are the best way to verify model
assumptions

o It is frequently best to right—censor costs when
costs were truncated because of a bad out-
come

1 MULTIPLE LINEAR REGRESSION 2

Problems with Traditional Ways of
Modeling Resource Utilization

1 Multiple Linear Regression

o Y = total hospital costs

e Problems with high outliers — too much in-
fluence on regression coeflicient estimates, etc.

e Often a minimum non—zero cost

e Non—normally distributed residuals — improper

confidence limits

2 Linear Regression on Transformed Y

e Commonly use log(Y)

e Assumes that patient conditions affect costs
multiplicatively

e Residuals still not normal

e Example: hospital charges associated with
coronary bypass surgery —




3 BINARY LOGISTIC REGRESSION FOR HIGH OUTLIERS 3

Had to take logs 6 times to obtain normal
distribution

3 Binary Logistic Regression for High
Outliers

o Statistically inefficient (lower power, larger
s.e.)

e Requires arbitrary choice of high—utilization
cutoff

e Does not provide estimate of total system
costs

4 Problems with Interrupted Observa-
tion

e A hospital with high mortality could have
low costs

e Need to penalize when comparing with other
hospitals having different mortality probabil-
ities

4 PROBLEMS WITH INTERRUPTED OBSERVATION 4

e Instead of considering a cumulative $12,000
cost at the day of death to be a complete
measurement, we could consider the cost to
be $12,000+ (right—censored)

o It is hard to unbiasedly estimate the com-
plete cost had the patient lived, but in most
cases we will do so more accurately by allow-
ing for censoring rather than ignoring it 1

e Look at model R? with and without censor-
ing

See 6,20,

1See P. 164-166 of ' for pointers for how to check for informative censoring and to explicitly model the censoring process.




1 INTRODUCTION AND NOTATION 5

General Regression Models

1 Introduction and Notation

e Regression model using weighted sum of a
set of independent or predictor variables

e Interpret parameters and state assumptions
by linearizing model with respect to regres-
sion coefficients

e 'xamine regression assumptions

Y response (dependent) variable

X X1,Xo9,...,Xp — list of predictors

Jé; Bo: 3., 0p — regression coefficients
Bo intercept parameter(optional)
B1,...,0p weights or regression coefficients
NQ Qol_lQvaulT...l_lQ@N%“NO”H

Model: connection between X and Y
C(Y|X) : property of distribution of ¥ given X,

2 MODEL FORMULATIONS 6

e.g.
C(Y|X)=E(Y|X) or Prob{y =1|Xx}.

2 Model Formulations

General linear regression model
C(YIX) = g(Xp).

Examples
c(Y|X)=  E(Y|X)=  XB,Y|X ~n(XB,02)

Linearize: h(C(Y]X)) = X8,h(u) = g~ 1(u)
Example:
C(Y|X) = Prob{y = 1|X} = (1 + exp(-xp))1
h(u) = logit(u) = Homf m :v
ne(Y)x)) = ¢ (v|x) (link)

General linear regression model: ¢/(Y|X) = X3.




3 INTERPRETING MODEL PARAMETERS 7

3 Interpreting Model Parameters

Suppose that X j 18 linear and doesn’t interact
with other X’s.

C'(YIX) = XB=0y+ MX1+ ...+ BpXp
B; = Q\ﬁ\_kfkw?;ﬁ.+r:;u€
_ QA%_NTN@:;N%..;N@v
Drop / from ¢’ and assume C(Y|X) is property

of Y that is linearly related to weighted sum of
X’s.

4 Relaxing Linearity Assumption for Con-
tinuous Predictors

4.1 Simple Nonlinear Terms

C(Y|X1) = By + B1X1 + B2 XT.

Hy : model is linear in X; vs. Hg : model is
quadratic in X; = Hpy: 89 = 0.

4 RELAXING LINEARITY ASSUMPTION FOR CONTINUOUS PREDICTORS 8

Polynomials do not adequately fit logarithmic
functions or “threshold” effects, and have un-
wanted peaks and valleys °.

4.2 Splines for Estimating Shape of Regression
Function and Determining Predictor Trans-
formations

Spline Function: piecewise polynomial

Linear Spline Function: piecewise linear func-
tion

Ex: X-axis divided into intervals with end-
points a,b,c (knots).

f(X) = Bo+B1 X +P2(X—a) 4 +63(X—b) 1 +4(X—c) 4,
where

(u)r = u, u>0,

0, «<0.
£(X) = By + 51X, X <a
= By + L1 X + Bo(X —a) a< X <b

=By + /X +B(X—a)+pP3(X—-b) b<X<c




4 RELAXING LINEARITY ASSUMPTION FOR CONTINUOUS PREDICTORS 9

= By + B1X + B2(X —a)
+63(X —b) + B4(X —¢) c< X.

£(X)

Figure 1: A linear spline function with knots at a=1, b=3, c=5

C(Y1X) = f(X) = X5,
where X3 = y+ 51 X1+ 89X+ B3X3+ 54Xy, and
X1=X X9=(X—-a)s
Xg=(X-b)4 Xg=(X-c)t.

Overall linearity in X can be tested by testing
monQMHQWH\Q#HO.

4 RELAXING LINEARITY ASSUMPTION FOR CONTINUOUS PREDICTORS 10

4.3 Cubic Spline Functions

Cubic splines are smooth at knots (function,
first, second derivatives agree).

F(X) = By BLX + BaX? + By X3
+ B4(X —a)d + B5(X —b)L + Bg(X — o)
= Xp3

k knots — k+ 3 coeflicients excluding intercept.
See 419,21 for more information.

4.4 Restricted Cubic Splines

Stone and Koo 24: cubic splines poorly behaved
in tails. Constrain function to be linear in tails.
k+ 3 — k — 1 parameters.




4 RELAXING LINEARITY ASSUMPTION FOR CONTINUOUS PREDICTORS 11

The restricted spline function with & knots ¢{,...,¢;
is given by
f(X) =By + B1X1 + foXo+ ...+ Br_1 X1,
where X1 =X and for j=1,...,k -2,
Xjp1 = (X = )3 = (X =t )3 (8, — 1)/ (b, — tg_1)
+ (X = )% (b1 — 1))/ (1 — tp—1)
(see 9).

4 RELAXING LINEARITY ASSUMPTION FOR CONTINUOUS PREDICTORS 12

5knots 6 knots.

Figure 2: Some typical restricted cubic spline functions for k = 3,4,5,6. The y-azis is X[3. Arrows indicate knots.

Once fy,...,H,_1 are estimated, the restricted
cubic spline can be restated in the form

F(X) = By+ BrX + Bo(X — 1) + B3(X —t9)3
o B (X )%




4 RELAXING LINEARITY ASSUMPTION FOR CONTINUOUS PREDICTORS 13

by computing
Br = [B2(ts — tg) + Bs(ta — tr) + ... + Bre—r(tp—e — tr)]/ (tk — te-1)
Bre1 = [Ba(ts — ti—1) + Bs(ts — tp—1) + ... + Br—1(tp—2 — th—1)]/(tr—1 — tr)-

A test of linearity in X can be obtained by
testing

monhwnﬁw”...nﬁ\alHHO.
See 12 for more info.

4.5 Choosing Number and Position of Knots

e Knots are specified in advance in regression
splines

e Locations not important in most situations
7,23

e Place knots where data exist — fixed quan-
tiles of predictor’s marginal distribution

e F'it depends more on choice of &

Quantiles
.05 595
.05 .35 .65 .95
.05 275 5 725 .95
.05 .23 41 b9 77 .95
025 .1833 .3417 .5 .6583 .8167 .975

N OOt W

5 STEPS OF ONE POSSIBLE MODELING STRATEGY 14

n < 100 — replace outer quantiles with 5th small-
est and 5th largest X 24.

Choice of k:

e Flexibility of fit vs. n and variance
e Usually £ = 3,4,5. Often k=4

o Large n (e.g. n>100) — k=5

e Small n (< 30, say) — k=3

o Can use Akaike’s information criterion (AIC)
2,20 to choose k

e This chooses k to maximize model likelihood
ratio x2 — 2k.

5 Steps of One Possible Modeling Strat-
egy

1. Assemble accurate, pertinent data and lots
of it.

2. Formulate good hypotheses — specify rele-
vant candidate predictors and possible inter-
actions.
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3.

10.

11.

12.
13.

STEPS OF ONE POSSIBLE MODELING STRATEGY 15

Discard observations having missing Y after
characterizing

. Characterize and impute missing X

. Do data reduction if needed (pre — transfor-

mations, combinations), or use penalized es-
timation 27

. Use the entire sample in model development

. Check linearity assumptions and make trans-

formations in Xs as needed.

. Check additivity assumptions and add pre—

specified interaction terms.

. Check to see if there are overly—influential

observations.

Check distributional assumptions and choose
a different model if needed.

Do limited backwards step—down variable se-
lection if parsimony is more important that
accuracy 22.

This is the “final” model.

Validate this model for calibration and dis-

5 STEPS OF ONE POSSIBLE MODELING STRATEGY 16

crimination ability, preferably using bootstrap-
ping.
14. Shrink parameter estimates if there is overfit-

ting but no further data reduction is desired
(unless shrinkage built—in to estimation)

15. When missing values were imputed, adjust
final variance—covariance matrix for imputa-
tion wherever possible

16. When all steps of the modeling strategy can
be automated, consider using Faraway’s method
9 to penalize for the randomness inherent in
the multiple steps.

See 11,
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Censored Data Parameters of censoring distribution do not
overlap with parameters of response distri-
bution.

1 Background Likelihood function separates into two com-

ponents that can be maximized separately.

e Response variable Y is usually time until an
event 2 Notation, Survival and Hazard Func-

e Allow for censoring tions

e Ex: by follow—up study; subject still alive at

5y has failure time 5+ S(y) = Prob{y >y} =1 - F(y)

e Length of follow—up can vary

1.0
L

e Response variable can actually be anything

0.8
L

e Must usually have independent censoring:
Random variable representing response is sta-
tistically independent of random variable rep-
resenting censoring value.

Subjects are not selectively censored when o0 0z 04 05 08 10
they appear to be at a low or high risk of the H
event of interest.

0.6
L

Survival Function
0.4
L

0.2
L

Figure 3: Survival function

e Hazard function (force of mortality; instan-

e Minimal assumption: non—informative cen-
taneous event rate)

soring.
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10 12 14
L L

Hazard Function
8
L

0.0 0.2 0.4 0.6 0.8 10
t

Figure 4: Hazard function

oY discrete —
My) = Prob{Y =y|Y >y},
which using the law of conditional probabil-
ity becomes
A(t) = Prob{Y = y}/Prob{y >y}
f(y)

S(y)’

e f(y) is the probability density function of v
evaluated at y: the derivative or slope of the
cumulative distribution function 1 — S(y).

e Quantiles and mean of distribution of Y:
Yg = 511 -q)

2 NOTATION, SURVIVAL AND HAZARD FUNCTIONS 20
Yp.5 = $71(0.5)
p=fg°Swdv (Y+)
e Potential response for subject i: ¥;

e Censoring value of response: D,

¢ Event indicator:

e; = 1 if the event was observed (Y; < D;),
= 0 if the response was censored (Y; > D;).

e The observed response is

y; = min(Y;, D;),

Y; D; Yi €
° 75 81 75
—e 7 76 7

68+ 68 68

52+ 52 52

_ o o = =

— e 20 56 20

Termination of Observation

Figure 5: Some censored data. Circles denote complete response observed.




3 HOMOGENEOUS DISTRIBUTIONS (NO CASE-MIX ADJUSTMENT)
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3 Homogeneous Distributions (No Case—

Mix Adjustment)

4 Nonparametric Estimation of S

4.1 Kaplan—Meier Estimator
e No censoring —

Sn(y) = [number of Y; > y]/n.

e Kaplan—Meier (product-limit) estimator

y No. Subjects Complete Censored Cumulative

At Risk Probability
12 100 1 0 99/100 = .99
30 99 2 1 97/99 x 99/100 = .97
60 96 0 3 96/96 x .97 = .97
72 93 3 0

90/93 x .97 = .94

mmz;@vn”s%w@AH|.&\:L“

1
e Simple example

¢; = number of complete responses at y;.

4 NONPARAMETRIC ESTIMATION OF S 22

1 3367 8" 9 10T,

iy ny ¢ (ng—ci)/ny
1171  6/7
2362 4/6
3921 1/2

MWZQV =1, 0O<y<l

6/7=.85 1<y<3
(6/7)(4/6) = .57, 3<y<9

= (6/7)(4/6)(1/2) = .29, 9<y<10.




4 NONPARAMETRIC ESTIMATION OF S

Survival Probability

Figure 6: Kaplan-Meier product-limit estimator with 0.95 confidence bands.

1.0

02 04 06 08

0.0

23

estimator is depicted with the dashed lines.

The Altschuler-Nelson—Fleming—Harrington

1 ALLOWING FOR COVARIABLES THROUGH MULTIPLICATIVE HAZARDS EFFECTS 24

Proportional Hazards Regression Model

1 Allowing for Covariables through Mul-
tiplicative Hazards Effects

= Ay) exp(X3)
= exp[-A(y) exp(X8)] = @xgl\/@:mxikmv

)
)

Ay) = [ Mu)du
) = §(y)2P(XD)

1.1 Model Assumptions and Interpretation of
Parameters

log A(y|X) = logA(y) +Xp3
log —log S(y|X) = log —log S(y) + X 5.
Assumptions:

e Linear effect of predictors on log A, log A
log —log S
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e No interaction between X and y — impact of
X same over response values

B = yomy@_kfxm?;ﬁjr:@.if.;g
— _o@@_kf..;ﬁf.;ki
= ﬂomLomm@_NTN@:;ﬁ%ru@.it.;kwv
— ﬂomLomm@_Nf:;ﬁt:LQV

e Effect of increasing X j by d is to increase A
by factor of exp(s;d) or to raise S(y) to the
power exp(f;d) or to increase log —log S(y) by

B;d.

1.2 Assessment of Model Fit

X =1

X =

Figure 7: PH Model with one binary predictor. Y -azis is log A(y) or log A(y). Forlog A(y), the curves must be non—decreasing.
For log A(y), they may be any shape.

1 ALLOWING FOR COVARIABLES THROUGH MULTIPLICATIVE HAZARDS EFFECTS 26

t=t

t=t

XH

Figure 8: PH model with one continuous predictor. Y azis is log A(y) orlog A(y). Forlog A(y), drawn for y» > y1. The slope
of each line is B1.

t

Figure 9: PH model with one continuous predictor. Y azis is log A(y) or log A(y). For log A, the functions need not be
monotonic.
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Figure 10: Regression assumptions, linear additive PH model with two predictors. Y azis is log A(y) or log A(y) for a fized y.

2 Cox Model

2.1 Preliminaries

e Developed by DR Cox 3
e Most popular survival model

e Semi—parametric (non—parametric hazard; para-
metric regression)

e Usually more interest in effects of X than on
shape of A(y)

e Uses only rank ordering of responses — more
robust

2 COX MODEL 28

e Even if parametric PH assumptions true, Cox
model still fully efficient for g

e Model diagnostics are advanced
2.2 Model Definition

Ay|X) = Ay) exp(Xp)
S(y|X)

e No intercept parameter

[
N
/N
<
N—"
@D
=
<
S
=

e No assumption about shape of X or S

e Does not assume a simple connection between
mean and median

o All monotonic transformations of Y yield same

g

2.3 Extending the Model by Stratification

e Is a unique feature of the Cox model
e Adjust for non—modeled factors

e Factors too difficult to model or fail PH as-
sumption
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e Commonly used to adjust for variation across
hospitals

e Allow form of X to vary across strata
e Rank responses within strata
e Stratum ID is C

AylX,C =j) = Aj(y) exp(XpB), or

S(y1X,C =j) = 8;(y)*PEF).

e Not assume connection between shapes of A
e By default, assume common g

e Ex: model age, stratify on sex
Estimates common age slope pooling F and
M
No assumption about effect of sex except no
age interact.

o Can stratify on multiple factors (cross—classify)

e Loss of efficiency not bad unless number of
events in strata very small

e Stratum with no events is ignored

3 ESTIMATION OF 8 30

o Estimate 3 by getting separate log—likelihood
for each stratum and adding up (indepen-
dence)

e No inference about strat. factors

e Useful for checking PH and linearity assump-
tions: Model, then stratify on an X

e Can extend to strata x covariable interaction

Ay|X1,C =1) = A (y) exp(81X7)
Ayl X1,C =2) = A(y) exp(B1 X1 + B2 X1).

Myl X1,C = j) = Aj(y) exp(1 X1 + G2X2)

e X5 is product interaction term (0 for F, X;
for M)

o Are testing interaction with sex without mod-
eling main effect!

3 Estimation of s

e Cox partial likelihood




4 ESTIMATION OF SURVIVAL PROBABILITY AND SECONDARY PARAMETERS 31

o If no ties in Y Is a marginal likelihood of the
ranks of responses

e Several methods for handling tied Y; Efron’s
8 is a good default

o For heavy ties (e.g., some length of stay stud-
ies), may need to handle ties exactly (SAS
PROC PHREG does this efficiently) or break

ties by adding small random errors to Y

4 Estimation of Survival Probability
and Secondary Parameters

e Kalbfleisch—Prentice discrete hazard model
method — K- M if 3 =0

S(y1X) = S(y) 2B,

e Stratified model — estimate underlying haz-
ard parameters separately within strata

e “Adjusted K—M estimates”

e Use to estimate quantiles and (if largest re-
sponse uncensored) the mean

4 ESTIMATION OF SURVIVAL PROBABILITY AND SECONDARY PARAMETERS 32

e For mean, compute area under step—function:

A~ ~

nx = 118(u) " PED) 1 (4 — 1) 8 (yg) *PXP)
+ o (g - 1)S ().

where the unique uncensored responses are

Yl Ype

e Highest response censored — can compute
mean restricted cost

e No censoring, no covariables — reproduces Y

e Computational trick for estimating mean Y
for many different subjects:
Compute areas under S(y|X) once for a se-
quence of X3
Save the areas, and for any new X7 use lin-
ear interpolation on this sequence to estimate
new mean

e Determine relationship between hazard ra-
tios and mean or median cost ratios by plot-
ting X,3 vs. predicted mean or median cost
given X;
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5 Residuals To not assume PH in Xy, stratify on it:

log M(y| X2, C = j) = log \;(y) + 81 X2 + B2.X)

Residual Purposes

martingale assessing adequacy of a hypothesized predictor transformation l_l Qw Nm\
graphing an estimate of a predictor transformation (Section 6.1)
Schoenfeld testing PH assumption (Section 6.2) = _.Om \/b Aw\v I_l .\.ANMV .

graphing estimate of hazard ratio function (Section 6.2)

o Example of modeling a single continuous vari-
able (left ventricular ejection fraction), re-
sponse = time to cardiovascular death

The AICs for 3, 4, 5, and 6—knots spline fits
6.1 Regression Assumptions were respectively 126, 124, 122, and 120.

6 Assessment of Model Fit

Example: A 4-knot spline Cox PH model in
two variables (X7, X9) which assumes linear- ]
ity in X7 and no Xy x Xy interaction

| og Rel ative Hazard
5

AylX) = Ay) exp(B1X1 + f2Xo + 03X5 + 04X5),
= Ay) exp(B1 X1 + f(X2)), -

f(Xg) = PaXo + F3X5 + s X5, T i e B o ik oo D B e s

log My X) = log M(y) + 81X1 + f(X3). Smoothed residual plot: Martingale residu-

als, loess smoother




6 ASSESSMENT OF MODEL FIT 35

e One vector of residuals no matter how many
covariables

e Unadjusted estimates of regression shape ob-
tained by fixing 3 =0 for all Xs

loess Fit and 0.95 Confidence Bars

1.0

....... ols Spline Fit and 0.95 Confidence Limits
———  lowess Smoother

Martingale Residual

0.0

0.2 0.4 0.6 0.8
LVEF

Figure 12: Three smoothed estimates relating martingale residuals 2° to LVEF.

Purpose Method

Estimate transformation for Force 3; = 0 and compute

a single variable residuals off of the null regression

Check linearity assumption for Compute f; and compute

a single variable residuals off of the linear regression
Estimate marginal transformations Force 3i,...,8, = 0 and compute
for p variables residuals off the global null model

Estimate transformation for Estimate p — 1 (s, forcing (3; = 0, compute

variable ¢ adjusted for other p — 1 residuals off of mixed global/null model

6 ASSESSMENT OF MODEL FIT 36

6.2 Proportional Hazards Assumption

o Parallelism of log —log S(y) plots

e Comparison of stratified and modeled esti-
mates of S(y)

e Stratify Y, get interval-specific Cox regres-
sion coefficients:
In an interval, exclude all subjects with
response before start of interval
Censor all events at end of interval

Example:

Response Observations Complete Log Hazard Standard

Interval Response Ratio Error
[0,209) 40 12 -0.47 0.59
[209,234) 27 12 -0.72 0.58
234+ 14 12 -0.50 0.64

Overall Cox 3= —0.57.

e Schoenfeld residuals » computed at each unique
uncensored y

e Partial derivative of log L with respect to each
X in turn
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e Grambsch and Therneau scale to yield esti-
mates of 5(y) : 8+ drV, d=no. uncensored
responses

e Can form a powerful test of PH (Z:PH in old
SAS PROC PHGLM)

{
—— loess Smoother, span=0.5,0.95C.L.
= M 1t Super Smoother
=
4
"4
T A
T S
5
[}
3
m w I
b
S 1
T T T T T T T
0 2 4 6 8 10 12
t

Figure 13: Smoothed weighted '° Schoenfeld '® residuals. Test for PH based on the correlation (p) between the individual
cighted Schoenfeld residuals and the rank of response yielded p = —0.23, 2 = —6.73, P = 2 x 107'*,

e Can test PH by testing yx X interaction using
time— dependent covariables

6 ASSESSMENT OF MODEL FIT 38

Assumptions of the Proportional Hazards Model
AW]X) = A(y)er Xo+8: Xt 48, X,

Variables Assumptions Verification

Shape of A(y|X) for fixed X as y t
Response Variable Y/ Cox: none Shape of Skwm(y)
Weibull: 3’

Categorical X: check
parallelism of stratified
log[—log S(y)] plots as
y T

Muenz ** cum. hazard
ratio plots

5

e Arjas ! cum. hazard
plots
e Check agreement of
- Proportional hazards  effect of X does stratified and modeled
Interaction between X - . . .
qy not depend on Y. E.g. treatment effect is estimates
an .
constant over y cutoff. o Hazard ratio plots

Smoothed Schoenfeld
residual plots and cor-
relation test (y vs.
residual)

e Test time-dependent
covariable such as X x
log(y + 1)

Ratio of parametrically
estimated A(y)

k-level ordinal X
linear term + k — 2
Shape of A(y|X) for fixed y as X dummy variables
Individual Predictors X Linear: log A(y|X) = log A(y) + 8X
Nonlinear: log A(y|X) =1log A(y) + f(X)

Continuous X: Poly-
nomials, spline func-
tions, smoothed mar-
tingale residual plot

Additive effects: effect of X; on log A is
independent of X5 and vice-versa

Test non additive terms,
e.g. products

Interaction between X
and X,




7 WHAT TO DO WHEN PH FAILS 39
Method Requires  Requires Computa-  Yields Yields Requires  Must Choose
Grouping  Grouping tional Formal Estimate of Fitting 2 Smoothing
X y Efficiency Test X2(y)/Ai(y)  Models Parameter
log[—log], Muenz, Arjas plots x x x
Dabrowska log A difference plots x x x x
Stratified vs. x x x
Modeled Estimates
Hazard ratio plot x ? x b'e ?
Schoenfeld residual x x x
plot
Schoenfeld residual x x
correlation test
Fit time dependent x x
covariables
Ratio of parametric x x x x x
estimates of A\(y)

See Hess 13 for an excellent review of graph-
ical methods for assessing PH.

7 What to Do When PH Falils

e Test of association not needed — stratify

e P—value for testing variable may still be use-
ful (conservative)

e Distribution estimates wrong in certain in-
tervals of y

e Can model non-PH:

AMy1X) = Ao(y) exp(B1X + foX x log(y + 1))

e Can also use response intervals:

8 QUANTIFYING PREDICTIVE ABILITY 40

Myl X) = 2\g(y) exp[B1 X + BoX x I(y > )],
8 Quantifying Predictive Ability

e R{p =1-exp(-LR/n) 10
Divide by max attainable value to get mwé

e ¢ = concordance probability (predicted vs.
observed)

e Is a generalized ROC area

e All possible pairs of subjects whose ordering
of responses can be determined

e Fraction of these for which X ordered same
as'yY

L MOHHH@H.mu bH@ = MAQ — Omv

9 Validation of Discrimination and Other

Statistical Indexes

Validate R2, Dgzy indexes, optimally using the
bootstrap so that don’t hold back data 1l.
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Can also validate slope calibration to esti-
mate shrinkage from overfitting:

A(ylX) = Ay) exp(7XD).

Example in which all predictors are noise:

Index Final Bootstrap Evaluate Optimism Corrected
Model Fit Sample Models Orig. Sample Index
D,, -0.16 -0.31 -0.09 -0.22 0.06
R% 0.05 0.15 0.00 0.15 -0.10
Slope 1.00 1.00 0.25 0.75 0.25

10 Describing the Fitted Model

e Can use coefficients if linear and additive

e In general, use e.g. inter—quartile-range haz-
ard ratios for various levels of interacting fac-
tors

e Translate to cost ratios
e Nomogram to compute X33
e Also 5(y|X) for a few y

e Axis for median cost
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e Axis for mean cost

Points

age (sex=Male)

0 10 20 30 40 50 60 80
age (sex=Female)

0 10 20 30 40 50 70 90

Total Points
0 20 40 60 80 100
Linear Predictor
-3 -2 -1 0 05 1 15 2 25
3|Male) —
Gl ) 0.99 0.98 095 09 08
S(3 | Female)
098 095 09 0807 05 03 01
Median (Male) —
12 8
Median (Female)

—_——
12 8 4 2 1

Figure 14: Nomogram from a fitted stratified Coz model that allowed for interaction between age and sex, and nonlinearity in
age. The azis for median survival time is truncated on the left where the median is beyond the last follow-up time.
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Case Study

e Ambulatory care — family medicine clinic
o Data courtesy of George R Parkerson 17

e 413 patients from Caswell Family Medical
Center, NC

o Y = total charges for office health care during
18—month follow—up

e No censored charges
¢ 106 patients have Y =0

e Median=%$99, mean=$181, 75%=%$260,
95%=%609, 99%=$1202

e Median non-—zero charge=$157

e Predictors:

Variable Meaning

hyperten hypertensive vs. normotensive (HT, NT) n = 116 vs. 297
age

sex

dusoi Duke U. severity of illness checklist (0-100)
perceive Perceived health status (0, 50, 100)

dis Perceived disability (0, 50, 100)

numdx  Number of diagnoses (1-6)
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e perceive, dis are from the Duke Health Pro-

file

e Distribution of 18m charges

# S-PLUS commands

hist(charge, nclass=30, xlab=’Total Charges, $’)

0 500 1000 1500
Total Charges, $

Figure 15: Histogram of total charges

e One minus cumulative dist. of charges, by
hyperten

# Using UNIX S-PLUS Design library in statlib in conjunction
# with Terry Therneau’s survival4 package (in statlib or S-PLUS 3.3)

S < Surv(charge) # convert to survival time variable
f < survfit(S ~ hyperten, conf.type=’none’)

survplot (f, label.curves=’equal’, ylab=’1 - Cumulative Distribution Function’)

abline(h=.5, 1ty=2)
abline (v=tapply(charge,hyperten,median), 1lty=2)
text (1000, .75,paste (’Means=’,paste(
format (round (tapply (charge ,hyperten,mean),1)) ,collapse=’ ’),sep=’’))
title(’Survival Distribution of Charges by HT’)
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Survival Distribution of Chargesby HT Hypertension
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Figure 16: S'(y) stratified by hypertension E © § -
9]
g 28
. = <
) 0
e log —log plots for four important X’s 3 & 3 o
8 8 <
par(mfrow=c(2,2)) ‘éa’ 10 ‘éu’
f < survfit(S ~ sex, conf.type='"none") = 7k T T T T - T T T T T
survplot(f, loglog=T, logt=T, xlab=’log $’) 3 4 5 6 7 3 4 5 6 7
title(’Sex’) log$ log $

f < survfit(S ~ hyperten, conf.type="none")
survplot(f, loglog=T, logt=T, xlab=’log $°)
title(’Hypertension’)

Figure 17: Log-log Kaplan-Meier estimates vs. logy

e Prepare for Cox modeling: Handle ties by

f < survfit(S ~ cut2(dis,50), conf.type="none")

T ot sy Bor s ot ab=log 37 adding a random charge between 0 and 1$

f < survfit(S ~ cut2(dusoi,g=2), conf.type="none") for each 0 charge

# g=2 : cut at median dusoi

survplon(t, loglog=T, logt=T, xlab='log §°) e Fit preliminary Cox model allowing contin-
uous variables to behave nonlinearly in log
hazard

e Use restricted cubic splines with 4 knots

set.seed(19) # set random number seed so can reproduce results
charge <« ifelse(charge==0, runif(length(charge),0,1), charge)
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S < Surv(charge)

f < cph(S ~ rcs(age,4) + sex + rcs(dusoi,4) + hyperten + perceive + dis +
pol(numdx,2))
anova(f) #actually used latex(anova(f))

Table 1: Wald Statistics for S

Y df P

age 5.64 3 0.1303

Nonlinear 0.45 2 0.7976
sex 22.57 1 < 0.0001
dusoi 8.38 3 0.0388

Nonlinear 0.28 2 0.8696
hyperten 14.31 1 0.0002
perceive 4.46 1 0.0347
dis 13.39 1 0.0003
numdx 5.80 2 0.0551

Nonlinear 0.34 1 0.5576
TOTAL NONLINEAR 1.15 5 0.9493
TOTAL 112.75 12 < 0.0001

e Go to linear model and check proportional
hazards assumption

f < cph(S ~ age + sex + dusoi + hyperten + perceive + dis + numdx,
surv=T, type="kaplan-meier", x=T, y=T)

z < cox.zph(f, trans=log)
z

par (mfrow=c(3,3))
plot(z)
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rho chisq

age 0.022 0.18
sex=male -0.012 0.07
dusoi 0.092 3.45
hyperten=HT 0.124 6.22
perceive -0.009 0.03
dis 0.038 0.62

numdx 0.000 0.00
GLOBAL NA 14.60

e Overall test of PH:
e Culprit is hyperten (P =0.01)

p

.6672
L7979
.0632
.0127
.8574
.4306
.9926
.0416

P =0.04

48
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Beta(t) for hyperten=HT Beta(t) for age

Beta(t) for numdx
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Figure 18: Scaled Schoenfeld residuals. Trend for the HT effect is significantly non flat (P = 0.0127), indicating non PH.
dusoi had P = 0.06.

e Stratify on hyperten to allow non-PH

f < cph(S ~ strat(hyperten) + age + sex + dusoi + perceive + dis +
numdx, surv=T, type=’kaplan-meier’, x=T, y=T, time.inc=100)

f

z < cox.zph(f, trans=log)

z

Obs Events Model L.R. d.f. P Score Score P R2
413 413 86.16 6 0 81.81 0 0.188

No Event Event
hyperten=NT o 297
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hyperten=HT 0 116
coef se(coef) z P
age -0.00885 0.00425 -2.08 3.75e-02

sex=male

dusoi -0.00900

perceive

dis -0.00658
numdx -0.10245

0.10551 4.42 9.91e-06
0.00309 -2.92 3.55e-03
0.00169 2.36 1.85e-02
0.00177 -3.71 2.06e-04
0.05273 -1.94 5.20e-02

0.46626

0.00398

rho chisq P

age 0.021 0.17 0.678
sex=male -0.011 0.05 0.816
dusoi 0.079 2.54 0.111
perceive 0.007 0.02 0.883
dis 0.014 0.08 0.776
numdx 0.013 0.06 0.800
GLOBAL NA 4.03 0.673

e Display model in mathematical form

latex(f)

X@=

# latex uses print.display package from statlib

Prob{T" >t | hyperten = i} = 5;(£)¢"", where

0.6016 — 0.00885 age
+0.4663{male} — 0.008999 dusoi + 0.003977 perceive — 0.006579 dis — 0.1025 numdx

and {c} = 1 if subject is in group ¢, 0 otherwise.
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t Snr(t) Sur(t)

0 1.000 1.000
100 0.432 0.699
200 0.228 0.486
300 0.162 0.258
400 0.082 0.145
500 0.048 0.055
600 0.022 0.042
700 0.001 0.024
800 0.001 0.024
900 0.001 0.019
1000 0.000 0.014
1100 0.000 0.014
1200 0.000 0.014
1300 0.000 0.003
1400 0.000 0.001
1500 0.000 0.001
1600 0.000 0.001
1700 0.000 0.001

e Compute hazard ratio estimates

e For continuous var. use IQR ratios
plot (summary(£))

51
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Hazard Ratio
060 075 100 120 140 160 = 200

age - 50.9:30.2  —
dusoi - 56.2:31.2 - o—
perceive - 100:50 . —

dis- 50:0 . ——

numdx - 3:1  ———
sex - malefemale 4 @Hgf

Figure 19: Estimated hazard ratios. Outer quartiles used for non-binary variables

e Now use UNIX S-PLUS Design library func-
tions to get the estimated mean and median
charges

e The Mean function when operating on a Cox
model fit returns another S—-PLUS function
to compute the estimated mean on demand,
as a function of X3 and the stratum number

mean.charge ¢ Mean(f, method=’approximate’)
mean.charge # prints function definition
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#1lp.seq is sequence of linear predictor values for which areas under
#curve were computed
function(lp = 0, stratum = 1, 1lp.seq = c(-1.742, -1.70241, -1.66283, -1.62324,

1.14763, 1.18722), areas = list("hyperten=NT" = c(563.455, 551.992,
22.7064), "hyperten=HT" = c(944.281, 924.2, 903.982, 883.648, 863.221,

98.2788, 94.9573, 91.7319, 88.6001, 85.5592, 82.6071)))

{

if (length(stratum) > 1)

stop("does not handle vector stratum")

area < areas[[stratum]]

if (length(lp.seq) == 1 && all(lp == lp.seq))

ymean < rep(area, length(lp))

else ymean < approx(lp.seq, area, xout = 1lp)$y #linear interpolation
if (any (is.na(ymean)))

warning("means requested for linear predictor values outside range of
linear predictor values in original fit"

)

names (ymean) < names (1p)

ymean

}

#Pull off sequence of X*Beta hats used
1p < mean.charge$lp.seq

#Pull off areas under survival curve estimates for first stratum (no hyperten)
mean.no < mean.charge$areas[[1]]

#Now do it for second stratum
mean.yes<— mean.charge$areas[[2]]

e Plot X3 vs. mean, separately by strata. Then
do for median.

plot(lp, mean.no, type=’1’,
xlab=’X*Beta’, ylab=’Predicted Charge’, ylim=c(0,950))
lines(lp, mean.yes, lty=2)

quan < Quantile(f) # composes function to compute medians on demand
median.no < quan(lp=lp, stratum=1)
median.yes<— quan(lp=lp, stratum=2)

lines(lp, median.no)

lines(lp, median.yes, lty=2)

text(c(-.62,-.596,-.548,-.43),c(129,215,324,416),
c(’median’,’mean’,’median’,’mean’), srt=-25)
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»

Predicted Charge

-15 -1.0 -0.5 0.0 05 10
X*Beta

Figure 20: uﬁw vs. predicted mean and median charges

e Plot predicted mean vs. predicted median
charges

plot(median.no, mean.no, type=’1l’, xlab=’Predicted Median’,
ylab="Predicted Mean’, xlim=range(c(median.no,median.yes)),
ylim=range (c(mean.no,mean.yes)))

lines(median.yes, mean.yes, lty=2)
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Predicted Mean

0 200 400 600 800
Predicted Median

Figure 21: Relationship between predicted mean and median charges, by strata

e Convert hazard ratios to mean or median
charge ratios

# Solve for mean charge in no hypertension stratum where X*beta=0
mean0.no < approx(lp, mean.no, xout=0)$y

mean0.yes ¢« approx(lp, mean.yes,xout=0)$y
median0.no < approx(lp, median.no, xout=0)$y
median0.yes ¢« approx(lp, median.yes, xout=0)$y

elp « exp(lp)

plot(elp, mean0.no/mean.no, type=’1’,
xlab="Hazard Ratio’, ylab=’Recriprocal of Charge Ratio’,
x1im=c(0,3.5) ,ylim=c(0,10))

lines(elp, mean0.yes/mean.yes, 1lty=3)

abline(a=0,b=1,1ty=2)

lines(elp, medianO.no/median.no, lty=4)

lines(elp, median0.yes/median.yes, 1ty=5)

scatid(exp(f$linear.predictors)) #show rug plot for density of exp(X*beta)
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Recriprocal of Charge Ratio

0 1 2 3
Hazard Ratio

Figure 22: Relationships between hazard ratios and (mean or median) charge ratios

e Draw a nomogram depicting how predicted
charges are computed

# Negate coefficients in model so that high risk = high charges
g« f

g$coefficients < -g$coef
g$center < -g$center

mean.charge.no ¢ function(lp) mean.charge(-1lp, stratum=1)
mean.charge.yes < function(lp) mean.charge(-lp, stratum=2)
median.charge.no < function(lp) quan(lp=-lp, stratum=1)
median.charge.yes< function(lp) quan(lp=-lp, stratum=2)

nomogram(g, dis=c(0,50,100),
fun=1ist (’Mean charge, NT’ =mean.charge.no,
’Mean charge, HT’ =mean.charge.yes,
’Median charge, NT’=median.charge.no,
’Median charge, HT’=median.charge.yes),
lmgp=.4,lp.at=seq(-1.2,1.2,by=.2),
fun.at=c(10,20,30,40,50,100,150,200,250,300,400,500,600,700,800))
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Points

Age
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DUSOI
Perceived Health
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Median charge, NT

Median charge, HT

o 10 P 30 40 30 §0 i §0 0 190

15 20 25 30 35 40 45 50 55 60 65 70

female

mae

o 20 4o 60 do 1bo 120 10 180 180 200 " 220 280 280 280

A2 1 08 06 04 02 02 04 06 08 1 12
% 4 50 100 150 20 20 3o abo
100 150 200 250  3do b0 sh0  6bo
# 30 4os0 100 150 200250 30
100 B0 200 250 300 400

Figure 23: Nomogram depicted fitted stratified Coz PH model
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