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Outline

• Nature and complexity of models

• Problems with data–guided model selection

• Need for a monotonic model selection process

• Biased estimators (shrinkage)

• How does one choose a penalty?

• Can the data tell us the optimum penalty?

• Advantages of penalized estimation

• Achieving parsimony by approximating the “best”

model

• Summary
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Nature and Complexity of Models

• Response = anatomy + physiology + pathology +

genetics + quality of medical care + compliance +

medical decisions + society + environment +

personal wealth + . . .

• Model: a current approximation to complex

relationships

• Model/variable selection implies that there is some

likelihood of a “true” model (some pre–specified

variables have zero association with Y )

• Bayesian Information Criterion (BIC) “assumes that

a true model exists and is low-dimensional”[6]

• Akaike Information Criterion (AIC) allows the

complexity of the model to grow with the availability

of information
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Data–Guided Modeling Problems

• General: using data to guide modeling process,

with no structure →overfitting, failure to validate,

nonsense models

• If stepwise variable selection were invented today

and submitted to a statistical journal the paper

would be rejected

• Problem 1: data not capable of discerning some

things (e.g., selecting from among collinear

predictors)

• Problem 2: analysts have short memories

– Run stepwise variable selection

– Tear off last page of printout

– Show this page to client, including R2, standard

errors

• Altman&Andersen[1]: If properly account for

variability of variables selected (e.g., bootstrap),
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length of confidence intervals of Ŝ(t|X) could be

60% longer than naive estimates

• Nearly unbiased estimate of σ2 in OLS regression

after stepwise: SSE / (n− # candidate d.f.)

• Ye [37]: “generalized degrees of freedom” (GDF)

for any “data mining” or model selection procedure

based on least squares

– Example: 20 candidate predictors, n = 22,

forward stepwise: GDF=14.1

– Example: CART, 10 candidate predictors,

n = 100, 19 nodes: GDF=76
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Monotonic Modeling Process

• Enter variables in order dictated by subject matter

experts or cost

• Enter principal components in order of total

variance explained (if can estimate component

coefficients with little error!)

• Pre–specify full model and examine effects of

increasing amount of penalization

• Any strategy controlled by a monotonic process

(especially by a single parameter) will have

– Less variability

– Stopping rule easier to specify
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Biased Estimation — Background

• Ex: clinical trial with 10 treatments, apparently best

treatment is # 7

• Can test whether µ7 = µi for pre–specified i

using Bonferroni inequality

• Ȳ7 is a poor estimator of µ7!

• Much lower MSE estimator obtained by shrinking

all treatment means toward grand mean[12]

• By building in bias we protect outselves in how

estimates will be used

• →prognostication of very low or high risk patients

improved by shrinkage; prediction for randomly

chosen patient not improved
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Penalized MLE

• Quadratic penalized likelihood (Verweij&van

Houwelingen[32])

log L− 1

2
λβ′Pβ

• P is flexible

– Can penalize categorical variables properly

(ignore s.d.)

– Can keep simple components (linear, additive)

unpenalized

∗ penalize nonlinear terms[15, 16],

∗ interaction terms

∗ terms representing departure from constant

slopes assumptions (e.g., proportional

odds)[19]

– If sufficient number of terms of each type, can

find best penalty for different term types

∗ simple, nonlinear, linear interaction, nonlinear

interaction

7



How to Choose λ?

• Specify d.f. to allow, solve for λ (later)

• Can’t choose λ by naive 10–fold cross–validation

• Example: n = 175, binary logistic model, 92

events

5 random normal predictors, linear with

β = 1, .5, .25, .125, 0

Expanded into restricted cublic splines with 4

knots; Total p = 15

• Cross–validated Q statistic (proportional to

deviance; measures discrimination + calibration

accuracya)

a logarithmic probability scoring rule
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Effective AIC

• Based on corrected AIC (small sample correction

for AIC)[21]

• Effective AIC = (likelihood ratio χ2 for penalized

model, but ignoring the penalty function) −2×

effective d.f.

• Effective d.f.= trace[I(β̂P )V (β̂P )]

I = information matrix ignoring penalty function

V = inverse of information matrix including

penalty[15]

• Need to demonstrate that there is minimal

uncertainty about λ so that double bootstrap not

needed;

Limited experience repeating AIC trace for multiple

re–samples is encouraging.

• Example: same training sample (n = 175),

10,000 observation validation sample
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• If use BIC, optimum penalty nearly ∞
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Figure 1: Choosing best penality parameter by examining effective corrected

AIC in n = 175 training sample. Upper left panel shows effective d.f. cor-

responding to each penalty. Dotted vertical lines are drawn at optimal penalty

for n = 10, 000 observation validation sample. Effective d.f. for penalty with

best corrected effective AIC is 6.185 = # events / 14.9. D.f. for penalty with

best validation deviance is 6.98, corresponding to an event ratio of 13.2. The

Brier score[3] is the mean squared error in predicting binary responses with

probabilities. It is a measure of calibration + discrimination.
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Shrinkage Improves Calibration Validation

• Previous example focused on ↑ discrimination

• Often get larger improvement in calibration

accuracy

• Makes predictions more conservative for extreme

subjects

• Calibration curve estimation: nonparametric

regression on (P̂i, Yi)[18]

• Useful index of calibration error:

Ē =avg. |P̂i − P̂ c
i |,

P̂ c = calibrated P̂

• In example, Ē = 0.051 using MLE, 0.015 using

PMLE

11



Predicted Probability

E
st

im
at

ed
 A

ct
ua

l P
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

P
I

M    MLE
P    PMLE
I    Ideal

Nonparametric calibration plot in n = 10, 000 observa-

tion test sample, for ordinary (Ē = 0.051) and penalized MLE
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Parsimony — At a Price

• Dropping insignificant terms to arrive at

parsimonious model is an illusion

– Low probability of selecting correct model if one

exists

– “Phantom” parameters still inflate variances

(model uncertainty)

– Parameters overestimated, F, χ2 stats.

destroyed

– Subject matter knowledge ignored,

interpretation messy

• Tibshirani’s lasso[29] does penalization and

variable selectiona and has good performance;

computationally difficult

• Breiman’s garrotte[5] is an alternative
aThe penalized likelihood requires that

∑
|βi| < k for some

choice of the penality parameter k; This is similar to using a weird

Bayesian prior with a spike at β = 0.
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• Another possibility is growing large trees using

recursive partitioning

– Different consumers could prune tree to different

levels

– Basic problem: usual regression trees have poor

predictive discrimination when they don’t overfit

• Simplifying model during development is

irrevocable

• Different consumers require differing degrees of

simplicity

• Set of variables available when predictions are

sought may not be the set envisioned by the

analyst
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Model Approximation — Methods

• “Gold standard” model is model with all

pre–specified terms, with possible deletion of a

block of variables having P = 0.8 for the pooled

test

• This “gold standard” model is penalized to have

maximum likely forecast accuracy

• Let Ẑ = Xβ̂ be the linear predictor from this full

penalized model (e.g., log odds, log hazard,

expected value)

• Approximate Ẑ from a set of candidate variables

– Original set with original complexity

– Original set, simplified (fewer knots, linear,

fewer interactions)

– Subset of original variables

– Alternate “surrogate” variables
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Methods of Approximation

• Stepwise regression

• Recursive partitioning

• Both OK since V [Ẑ|X] = 0

• Stop simplifying when approximation error

becomes unacceptable

– R2 in predicting Ẑ

– Avg. absolute prediction error

– 0.95 quantile of absolute pred. error

• Less uncertainty in
ˆ̂
Z than in variable selection

using Y

• But conditional on variables selected, in OLS

coefficients of approx. model are identical to those

of model re-fit against Y (see

http://hesweb1.med.virginia.

edu/biostat/presentations/

dilemmas.pdf)
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Example

• Training sample: n = 250, p = 15 predictors

N(0, 1), ρ = 0.4, 119 events

• 16β = 8 4 4 3 2 2 2 1 1 .5 0 0 0 0 0

• Penalty with best AICc = 29.1, effective d.f.=7.06 =

119/16.9

• Backward stepdown against Y chose variables

1 2 8 7 6 12 4 14 15 11 13 3 9 5 10

(stop with 1 2 8 if use α = 0.05)

• Backward stepdown against Ẑ chose

1 2 7 8 11 14 12 6 13 10 9 5 3 15 4

(stop with desired complexity)

• Validation sample: n = 10, 000
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When all 15 variables are included this corresponds to the full
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nalized model by predicting Ẑ from a subset of X . All model

components are linear and additive.
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Summary

• Known simple models are uncommon in clinical

biostatistics

• Simple models can be useful if derived sensibly

• Modeling process needs to be monotonic

• Biased estimators are better than unbiased ones

• Penalty parameters can be chosen from the data

(effective AIC)

• Parsimony of various degrees can be achieved by

approximating the “best” validating (penalized)

model

• Completely empirical approaches to model

selection are beset with problems of model

uncertainty

• Shrinkage uses the full model; ↓ uncertainty
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Abstract

Biostatistical modeling is often a contest between bias and variance. A good
modeler tries to reduce bias in predicting patient responses by having the
model incorporate all of the potentially relevant predictor variables and by adding
additional terms to allow for non–linearity and non–additivity. Judging by the ex-
tent to which stepwise modeling and other data mining techniques are used,
most practitioners seem to be very willing to let the data drive the modeling pro-
cess, and then to pretend that the model was pre–specified in order to make
statistical inferences using traditional variance formulas, etc. This process has
the apparent advantage of development of “small” models that at face value
seem to have parameter estimates with small variances. But overfitting is a
common result of either data mining or of fitting complex pre–specified mod-
els, and variances of estimates, if computed correctly by accounting for model
uncertainty, can become large; likewise measures of predictive discrimination
shrink once one accounts for model searching. J Ye (JASA 93:120, 1998) has
developed a very useful way to quantifying the degree of “data dredging” done
in developing a model.

Pre–specifying the fullest reasonable model and using penalization (shrink-
age) to downweight parameter estimates is a promising solution to the bias–
variance trade–off, especially when more complex portions of the model re-
ceive greater shrinkage. See for example PJM Verweij and HC van Houwelingen[32]
and FE Harrell et al.[19]. Of concern is the choice of the penalty parameter.
Some simulated examples showing advantages of “effective AIC” over 10–fold
cross–validation are presented.

When full but penalized model fits are used to reduce model uncertainty,
complexity of the final model may be a hindrance to its clinical use. Harrell
et al. (op cite) proposed that the final “gold standard” model be approximated
to any desired accuracy using stepwise regression or recursive partitioning. In
that way, an entire sequence of approximate models, inheriting the shrinkage of
the full model, can be presented to clinical users having different needs. Some
examples of this more linear approach to parsimony are presented.
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S-PLUS Code (File sim.s)

#This code requires the Hmisc and Design libraries
# See U. Virginia web page or lib.stat.cmu.edu
#See help file for lrm for more simulation/penalization examples

#Use 10-fold cross-validation to estimate predictive accuracy of
#logistic models with various penalties
#
store()
options(digits=3)
set.seed(123)
n <- 175
nval <- 10000
nt <- n + nval
x1 <- rnorm(nt)
x2 <- rnorm(nt)
x3 <- rnorm(nt)
x4 <- rnorm(nt)
x5 <- rnorm(nt)
logit <- x1+.5*x2+.25*x3+.125*x4
y <- ifelse(runif(nt) < plogis(logit), 1, 0)
f <- lrm(y ˜ rcs(x1,4)+rcs(x2,4)+rcs(x3,4)+rcs(x4,4)+rcs(x5,4),

x=T,y=T, subset=1:n)

new.data <- data.frame(x1,x2,x3,x4,x5,y)[-(1:n),]
Xnew <- predict(f, new.data, type="x", incl.non.slopes=F)
Ynew <- new.data$y

penalties <- c(0,.25,.5,.75,1:25)

pt <- pentrace(f, penalties)
# Use pentrace(f, 40, method=’optimize’) to find best penalty
# (40 = starting value)
aic.c <- pt$results.all[,’aic.c’]
edf <- pt$results.all[,’df’]

index <- matrix(NA, nrow=length(penalties), ncol=9,
dimnames=list(format(penalties),

c("Dxy","R2","Intercept","Slope","Emax","D","U","Q","B")))
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dev <- roc <- brier <- single(length(penalties))

evaltest <- function(cof,w=1:(length(cof)-1)) {
pred <- plogis(cof[1] + (Xnew[,w,drop=F] %*% cof[-1]))
C.index <- somers2(pred, Ynew)["C"]; names(C.index) <- NULL
Brier <- mean((pred-Ynew)ˆ2)
Deviance<- -2*sum( Ynew*log(pred) + (1-Ynew)*log(1-pred) )
c(deviance=Deviance, roc=C.index, brier=Brier)

}

i <- 0
set.seed(143)
for(penlty in penalties) {

cat(penlty, "")
i <- i+1
if(penlty==0) {

g <- f
X <- f$x
Y <- f$y
penalty.matrix <- diag(diag(var(X))) # save time - only do once

} else g <- lrm(Y ˜ X, penalty=penlty,
penalty.matrix=penalty.matrix, x=T,y=T)

val <- validate(g, method="cross", B=10)
index[i,] <- val[,"index.corrected"]
w <- evaltest(g$coef)
dev[i] <- w[1]; roc[i] <- w[2]; brier[i] <- w[3]

}

stores(aic.c, edf, index, dev, roc, brier)

#ps.slide(’crossval.penalty.Q’,type=3,hor=F,las=1,height=6,width=6)
setps(crossval.penalty.Q)
plot(penalties, index[,’Q’], xlab=’Penalty’,

ylab=’Q’, type=’b’)
dev.off()

setps(examine.test, h=6, pointsize=12, toplines=1)
par(mfrow=c(3,2))
Penalty <- penalties
best <- penalties[dev==min(dev)]
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w <- function() invisible(abline(v=best, lty=2, lwd=1))

plot(Penalty, edf, type=’b’, main=’Effective d.f.’); w()
plot(Penalty, aic.c, type=’b’,

main=’Effective AIC in Training Sample’); w()
plot(Penalty, dev, type=’b’, main=’Deviance in Test Sample’); w()
plot(Penalty, roc, type=’b’, main=’ROC Area in Test Sample’); w()
plot(Penalty, brier, type=’b’, main=’Brier Score in Test Sample’); w()
dev.off()

#Assess calibration accuracy in test sample
pred <- plogis(f$coef[1] + (Xnew %*% f$coef[-1]))
val.prob(pred, Ynew, group=T)

g <- update(f, penalty=penalties[aic.c==max(aic.c)],
penalty.matrix=penalty.matrix, x=F, y=F)

predp <- plogis(g$coef[1] + (Xnew %*% g$coef[-1]))
val.prob(pred, Ynew, group=T)

z <- list(’MLE’=wtd.loess.noiter(pred,Ynew,type=’eval’),
’PMLE’=wtd.loess.noiter(predp,Ynew,type=’eval’),
’Ideal’=list(x=c(0,1),y=c(0,1)))

setps(calibration.test)
labcurve(z, lty=c(1,3,1), lwd=c(2,2,4),

keys=c(’M’,’P’,’I’), method=’on top’,
xlab=’Predicted Probability’,
ylab=’Estimated Actual Probability’, pl=T)

dev.off()

#Model approximation - simulate a new training and test dataset

# Function to generate n p-variate normal variates with mean vector u
# and covariance matrix S
# Slight modification of function written by Bill Venables
mvrnorm <- function(n, p = 1, u = rep(0, p), S = diag(p)) {

Z <- matrix(rnorm(n * p), p, n)
t(u + t(chol(S)) %*% Z)

}

n <- 250
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nval <- 10000
nt <- n + nval

# Generate multivariate normal covariables for nt subjects
# Assume equal correlations of rho=.4, independent subjects
rho <- .4
set.seed(19)
X <- mvrnorm(nt, p=15, S=diag(rep(1-rho,15))+rho)

x1 <- X[,1]
x2 <- X[,2]
x3 <- X[,3]
x4 <- X[,4]
x5 <- X[,5]
x6 <- X[,6]
x7 <- X[,7]
x8 <- X[,8]
x9 <- X[,9]
x10<- X[,10]
x11<- X[,11]
x12<- X[,12]
x13<- X[,13]
x14<- X[,14]
x15<- X[,15]

logit <- .25*(2*x1+x2+x3+.75*x4+.5*x5+.5*x6+.5*x7+.25*x8+
.25*x9+.125*x10)

set.seed(149)
y <- ifelse(runif(nt) < plogis(logit), 1, 0)

f <- lrm(y ˜ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15,
x=T,y=T, subset=1:n)

best <- pentrace(f, 60, method=’optimize’)
pentrace(f, c(0,5,10,15,20,30,40,50,60,70,90))
fp <- update(f, penalty=best$penalty)

new.data <- data.frame(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
x11,x12,x13,x14,x15,y)[-(1:n),]

Xnew <- predict(f, new.data, type="x", incl.non.slopes=F)
Ynew <- new.data$y
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fastbw(f) # found following order of variables:
ovb <- c(1,2,8,7,6,12,4,14,15,11,13,3,9,5,10)

z <- predict(fp)
h <- ols(z ˜ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15,

subset=1:n, sigma=1)
fastbw(h, aics=1000) # found following order of variables:
ov <- c(1,2,7,8,11,14,12,6,13,10,9,5,3,15,4)
rsq <- deva <- roca <- briera <- devb <- rocb <- brierb <- single(15)
for(i in 1:15) {

fa <- lm.fit.qr.bare(X[1:n,ov[1:i],drop=F], z) # in Hmisc
rsq[i] <- fa$rsquared
w <- evaltest(fa$coef, ov[1:i])
deva[i] <- w[1]; roca[i] <- w[2]; briera[i] <- w[3]

fb <- lrm.fit(X[1:n,ovb[1:i],drop=F], y[1:n])
w <- evaltest(fb$coef, ovb[1:i])
devb[i] <- w[1]; rocb[i] <- w[2]; brierb[i] <- w[3]

}
stores(rsq, deva, roca, briera, devb, rocb, brierb)

setps(approx.test, h=6, pointsize=12, toplines=1)
par(mfrow=c(2,2))

plot(1:15, rsq, type=’b’, xlab=’# Variables Selected’,
ylab=’R2’, main=’Approximation R2’)

pl <- function(y1,y2,ylab)
invisible(labcurve(list(’Penalized’=list(1:15, y1),

’Stepdown’=list(1:15, y2)),
xlab=’# Variables Selected’, ylab=ylab,
lty=c(1,3), pl=T, method=’arrow’))

pl(deva, devb, ’Deviance’); title(’Deviance in Test Sample’)
pl(roca, rocb, ’ROC Area’); title(’ROC Area in Test Sample’)
pl(briera, brierb, ’Brier Score’); title(’Brier Score in Test Sample’)

dev.off()
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