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Hypothetical Example

Trial of Coronary Bypass Surgery

Number of n Deaths CABG:Medical 0.95 Con�dence P

Diseased Vessels Hazard Ratio Limits

1 900 40 0.97 [0:57; 1:32] 0.521

2 600 70 0.80 [0:60; 1:01] 0.051

3 700 130 0.70 [0:55; 0:88] 0.012

Overall 2200 240 0.85 [0:59; 1:02] 0.055

Test �2 d:f: P

Standard test for treatment e�ect 3.7 1 0.055

Test for interaction 12.5 2 0.002

Test for treatment e�ect allowing interaction 14.2 3 0.003
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Reasons for Survival Analysis in

Randomized Clinical Trials

1. Test for and describe interactions with

treatment

(a) Model relative bene�t (e.g., hazard ra-

tio)

(b) Test for and describe interactions with

treatment (subgroup analyses can eas-

ily generate bogus results and they do

not consider interacting factors in a dose{

response manner)

(c) Find out if some patients are too sick or

too well to have even a relative bene�t

2. Understand prognostic factors (strength

and shape)

3. Model absolute clinical bene�t

(a) Develop a model for survival probabil-

ity

(b) Compute di�erences in survival for treat-

ments A and B

(c) Di�erences will be due primarily to sick-

ness (overall risk) of the patient and to
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treatment interactions

4. Understand time course of treatment ef-

fect | period of maximum e�ect or pe-

riod of any substantial e�ect

5. Gain power for testing treatment e�ect

6. Adjust for imbalances
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Hazard and Survival Functions

T = time until an event

S(t) = ProbfT > tg = 1� F (t)

�(t) = lim
u!0

Probft < T � t + ujT > tg

u
= instantaneous event rate

Assumptions Model or Method

None Kaplan{Meier Estimator of S(t)

�(t) = constant Exponential Model (person{years)

S(t) = exp(��t)

�(t) = �t�1 Weibull Model

S(t) = exp(��t)
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The Proportional Hazards Family

Predictor variables:

X = fX1;X2; : : : ;Xpg

Xi binary, ordinal (if linear), continuous. Regression

e�ect:

X� = �0 + �1X1 + �2X2 + : : : + �pXp

Assume the e�ect of predictors is to multiply the un-

derlying hazard of the event:

�(tjX) = �(t) exp(X�)

The e�ect on S(t) is to raise it to a power:

S(tjX) = S(t)exp(X�)

Note absence of interaction between t and X ) ef-

fect of X is the same at all follow-up times t � pro-

portional hazards (PH) assumption.

Regression coe�cient for Xj, �j, = increase in log

hazard or log cumulative hazard at time t if Xj is in-

creased by one unit and all other predictors are held

constant and no predictors interact with Xj.

Example: �1 = 0:5, raise X1 from 0 to 1 increases

log hazard by 0.5

Increases hazard by a factor of exp(0:5) = 1:65 for

all t

Worsens survival from S(t) to S(t)1:65

Example: S(2yjX1 = 0) = 0:8;
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S(2yjX1 = 1) = 0:69.

Weibull PH Model:

�(tjX) = �t�1 exp(X�)

Cox PH model [3] (�(t) unspeci�ed):

�(tjX) = �(t) exp(X�)

The Cox model contains the log{rank test as a special

case (from the score test of the Cox regression coef-

�cient for treatment). The log{rank test and Cox

model test have the same assumptions.
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Examining Assumptions of PH Model

1. Shape of �(t) if parametric, e.g. Weibull:

Within \homogeneous" patient subsets plot log[� log(SKM(t)

vs. log t | should be a straight line.

2. PH Assumption:

(a) Check parallelism of log[� log(SKM(t))] estimates

over t for di�erent X .

(b) Hazard ratio plots

Use Cox model to estimate e�ects of X in an

interval of time, e.g. e�ect of unstable angina

vs. stable angina in months 6{12 after diagno-

sis.

Can be used to estimate e�ect of treatment on

instantaneous hazard rate for varying t.

(c) Plots of smoothed Schoenfeld residuals [18] vs.

t.

3. E�ect of X on log hazard at a speci�c t.

log �(tjX) = log �(t) +X�

Verify linearity inX or extend to allow non{linearity

by generalizing the model:

log �(tjX) = log �(t) + f(X)

Some choices of f(�):

(a) polynomial (�1X + �2X
2)

(b) piecewise cubic polynomials (splines) [11, 5, 19].

Spline functions are more exible and robust
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and like polynomials contain the linear model

as a special case ) formal test of linearity.

(c) Nonparametric: smoothed martingale residual

plot [21].

4. Joint E�ects of Several Predictors

log �(tjX) = log �(t) + f(X1; X2)

f(�) may often be modeled with main e�ects and

cross{products of variables making up each factor.

Test of cross{product terms ) test of additivity

(no interaction).

2βslope = 

1β

X =1

X

X =0
1

2

1

Figure 1: Regression assumptions, linear additive PH model with two predictors. Y {axis is log�(t)

or log�(t) for a �xed t.
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Assumptions of the Proportional Hazards Model

�(tjX) = �(t)e�1X1+�2X2+:::+�pXp

Variables Assumptions Veri�cation

Response Variable T
Time Until Event

Shape of �(tjX) for �xed X as t "
Cox: none
Weibull: t�

Shape of SKM(t)

Interaction between
X and T

Proportional hazards | e�ect of X
does not depend on T . E.g. treat-
ment e�ect is constant over time.

Binary X: check
parallelism of strati-
�ed log[� logSKM(t)]
plots as t "
Continuous X: esti-
mate � as a func-
tion of t | haz-
ard ratio plots (time
interval{speci�c haz-
ard ratios);
smoothed Schoenfeld
residual plots

Individual Predictors
X

Shape of �(tjX) for �xed t as X "
Linear: log�(tjX) = log�(t) + �X

Nonlinear: log�(tjX) = log�(t) +
f(X)

k{level ordinal X :
linear term + k � 2
dummy variables
Continuous X: Poly-
nomials, spline func-
tions, smoothed mar-
tingale residual plots

Interaction between
X1 and X2

Additive e�ects: e�ect of X1 on
log� is independent ofX2 and vice{
versa

Test non{additive
terms, e.g. products
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Over�tting and Data Reduction

Model will fail to validate (predictions will

be inaccurate) on a new sample and will give

undue inuence to quirks in the data if num-

ber of candidate predictor degrees of free-

dom (p) > d=15 where d is the number of

deaths (events) [10].

Univariable screening of candidates in no

way gets around this problem.
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Variable Selection

May yield stable (replicable) model if p <

d=15.

Clinical intuition is usually better.

Variable selection has these drawbacks:

1. The list of variables selected is highly af-

fected by variances of predictors and by

strong correlations among predictors and

by quirks in the data.

2. Variable selection results in over{optimistic

model �ts and inated estimates of � (re-

gression to the mean).

3. Traditional con�dence intervals derived from

the reduced model are invalid [1].

4. Variable selection often trades predictive

accuracy for parsimony [20].

5. Stopping rules are sometimes arbitrary.

6. Selection assumes that some variables have

� = 0, even clinically relevant ones.
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Data Reduction

Can solve many of the problems of variable

selection and over�tting [10]. Possible meth-

ods:

1. Clinical intuition | derivation of clinical

summary scores.

2. Principal components analysis [12].

3. Qualitative principal components [22].

4. Correspondence analysis [4].

5. Variable clustering [17].
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Model Validation

Verify that the model discriminates outcomes

as well as you think it does.

If the model is used to predict probabilities,

need to validate that the model is calibrated

over the entire risk range.

Model will almost always seem to �t when

tested on same data used to �t it.

Validation Methods:

1. Data{splitting [15]

2. Jackkni�ng (leave out 1)

3. Cross{validation (leave out m)

4. Bootstrap [6, 8, 7, 9]

For any of the methods you must be sure

to replicate all steps in model building (i.e.,

preliminary hypothesis tests, variable selec-

tion).

Bootstrapping, which uses 50{200 samples

of size n with replacement from the original

sample, has the following advantages:
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1. It does not require holding back data, so

n ".

2. It evaluates in a nearly unbiased way the

accuracy of the model developed on the

entire sample of size n.

3. It is more precise, i.e. requires fewer re{

samples to estimate an index of model �t

with a given accuracy.

4. It validates and graphically depicts vari-

ability in the variable selection process.

Example of bootstrapping to estimate over{
optimism:

Method Apparent Rank Correlation Over{Optimism Bias{Corrected Correlation

Of Predicted vs. Observed

Full Model 0.50 0.06 0.44

Stepwise Model 0.47 0.05 0.42
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Estimating Absolute Clinical

Bene�t

1. Estimate S(tjX) [13].

2. LetX1 be the (binary) treatment variable

and A = fX2; : : : ; Xpg be adjustment

variables.

3. Over the distribution of A, plot S(tjX1 =

1; A) � S(tjX1 = 0; A) vs. the survival

in the untreated patients, S(tjX1 = 0; A)

and also vs. any factors interacting with

X1.
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Figure 6: Strati�ed hazard ratios for pain/ischemia index over time. Data from the Duke Cardio-

vascular Disease Databank.
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Figure 8: Calibration of random predictions using Efron's bootstrap with B=40 resamples and 20

patients per interval. Dataset has n=200, 100 uncensored observations, 20 random predictors. �:

apparent calibration; X: bias{corrected calibration.

Index Original Training Test Optimism Corrected

Sample Sample Sample Index

Dyx -0.16 -0.33 -0.11 -0.22 0.05

Slope 1.00 1.00 0.24 0.76 0.24
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Figure 9: A display of an interaction between treatment, extent of disease, and calendar year of

start of treatment [2]

Figure 10: Cox{Kalbeisch{Prentice survival estimates stratifying on treatment and adjusting for

several predictors [16]
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Figure 11: Cox model predictions with respect to a continuous variable [14]
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