Problems with Surgical Report Cards

Frank Harrell Jr, PhD

Division of Biostatistics and Epidemiology

Dept. of Health Evaluation Sciences

versity of Virginia School of Medicine fharrell@virginia.edu

UVa Surgery Grand Rounds
25 Mar 1998

Outline

- Overview of how statistical models are used to examine variations in patient outcomes
- Which patient descriptors should be used, which should be avoided
- Methods for developing risk models
- Measuring a model's accuracy

Outline, Continued

- Regression to the mean, or why to disbelieve some of the data
- Why risk-adjusted mortality estimates cannot be used to reliably rank surgeons
- Best measures to use in a provider report card
- Why it's not a good idea to refuse to operate on high-risk patients

Overview of Statistical Models

- Choose a set of relevant patient measurements
- Relate these and surgeon effects to individual patient outcomes (30 day vital status)
- Subtract the effects of patient measurements on outcome
- What's left (imprecisely) measures effects of surgeons (level playing field)

Which Patient Measurements?

- Continuous measurements (age, heart pumping efficiency, weight, height) have many advantages
- Subjective assessments should be avoided if possible
- Classifications such as urgent or emergent surgery vary too much across surgeons
- Surgeons are tempted to engage in "coding creep"

Missing Data

- Some surgical practices do not adequately characterize patients pre-operatively
- Need to determine if outcomes are worse
- Often advisable to count missing variables as if they had the most normal levels
- Makes risk-adjusted outcome worse
- Incentive to improve data collection
- Need careful statistical analysis

Model Development

- Logistic multiple regression model patient descriptors are additive on log odds scale
- Can start with previously developed models
- Don't assume that continuous variables are linearly related to the log odds of death
- Wrong to select variables using *P*-values
- Avoid overfitting
- See Harrell, Lee, Mark (1996) Stat in Med

Estimating Shape of Relationship with Outcome

Spanos et al. (1989) JAMA

Measuring Model's Predictive Accuracy

- Goal: Forecast outcomes of new patients
- Predictive discrimination: ability of model to separate high and low-risk patients
- Calibration: agreement between predicted and observed proportions of deaths
- Validation methods: re-sampling, new patient series

Calibration Plot NY 1994 Model Validated in 3762 Patients

Shrinkage - Disbelieving Some of the Data

- Road intersection with \uparrow fatalities
- Make <u>any</u> engineering change
- Fewer fatalities next year
- See John Adams (1995) Risk
- Identify surgeon by \uparrow or \checkmark mortality, next year her op. mort. will be closer to mean
- REGRESSION TO THE MEAN

Shrinkage, Continued

- Can also affect predictive accuracy of risk models: Predict patient has 0.2 chance of dying, 0.15 of similar new pts. die
- Build discounting (shrinkage) into predictions

1970 Batting Averages

Efron & Morris, Scientific American 1977

Shrinkage, Continued

- Can estimate one surgeon's outcomes <u>more</u> accurately by pulling to grand mean
- Pull more towards mean when
 - Surgeon patient volume is low
 - Less variation in outcomes across surgeons
- Don't base practice changes on past noise
- Base changes on outcome patterns that will replicate

Surgeons Cannot be Ranked Reliably

- Ranking mortality is splitting hairs
- True probability that surgeon with best (worst) results is really the best (worst) is low
- Goldstein & Spiegelhalter (1996): J Royal Stat Soc A
- NY 1990-1992 CABG, sample of 17 out of 87 surgeons, risk-adjusted

Surgeon

Reporting Proposal by R Galbraith

Discussion to G&S Paper

Surgeon Lewin	<i>Cases</i> 762	Deaths 19	Risk-adjusted mortality per 100 cases		Rank
			2.04-5.13		4-16
Lajos	636	33	3.56-6.99	 -	11-17
Raza	618	12	1.15-3.56		1–14
Bergsland	613	5	0.34-2.13		1–10
Bhayana	607	17	1.87-4.89		316
Borja	545	22	2.85-6.38		7–17
Canavan	478	19	3.01-7.36		8-17
Vaughan	456	9	1.01-3.85	_ 	1-14
Britton	447	7	0.78 - 3.48		1-14
Cunningham	436	11	1.51-5.04		216
Yousuf	433	9	0.86-3.26	 ;	1-13
Tranbaugh	284	6	0.55-2.93		1-12
Ferraris	276	9	1.0 9 4 .18		1-15
Foster	266	8	1.34-5.41		2-16
Quintos	259	6	0.84-4.41		1-15
Bennett	257	6	1.02-5.34		1-16
Older	222	13	2.92-8.68		6-17
			0 0.41 2 4 6 8 10		

Problematic Statistical Measures

- Z-scores and P-values
- Multiple comparison problems (false positives)
- Not tied to relevant mortality differences
- Confidence intervals are better but still have confusing interpretation, difficult to use average or median mortality as a reference point

Better Report Card Measures

- Modification of Normand, Glickman,
 Gatsonis (1997) J Amer Statist Assoc
- Use Bayesian mixed effects logistic model (uses shrinkage)
- Examine each surgeon's effect (coefficient
 = log odds ratio)

Better Report Cards

- Estimate surgeon's odds of death relative to odds of death for "median" surgeon
- Compute Prob[odds ratio > 1.5]
- Concern if this probability > .9

Expected CABG Mortality and Long-Term Benefit

Califf, Harrell, Lee et al. Circ 78 Supp I 1988

Summary

- Choose patient descriptors carefully to increase data quality, minimize gaming, maximize discrimination
- Risk models must be derived carefully; avoid fitting noise
- Regression to the mean is a dominant effect in operative mortality

Summary, Continued

- Shrinkage of risk-adjusted mortality estimates is necessary
- Almost futile to rank fine differences
- Identify problems by the probability of a large relative odds of death
- Not operating on high-risk patients may not benefit a surgeon's risk-adjusted mortality or the patient