7  Modeling Longitudinal Responses using Generalized Least Squares

Some good general references on longitudinal data analysis are Davis (2002), Pinheiro & Bates (2000), Diggle et al. (2002), Venables & Ripley (2003), Hand & Crowder (1996), Verbeke & Molenberghs (2000), Lindsey (1997)

7.1 Notation

  • \(N\) subjects
  • Subject \(i\) (\(i=1,2,\ldots,N\)) has \(n_{i}\) responses measured at times \(t_{i1}, t_{i2}, \ldots, t_{in_{i}}\)
  • Response at time \(t\) for subject \(i\): \(Y_{it}\)
  • Subject \(i\) has baseline covariates \(X_{i}\)
  • Generally the response measured at time \(t_{i1}=0\) is a covariate in \(X_{i}\) instead of being the first measured response \(Y_{i0}\)
  • Time trend in response is modeled with \(k\) parameters so that the time “main effect” has \(k\) d.f.
  • Let the basis functions modeling the time effect be \(g_{1}(t), g_{2}(t), \ldots, g_{k}(t)\)
A

7.2 Model Specification for Effects on \(E(Y)\)

7.2.1 Common Basis Functions

  • \(k\) dummy variables for \(k+1\) unique times (assumes no functional form for time but may spend many d.f.)
  • \(k=1\) for linear time trend, \(g_{1}(t)=t\)
  • \(k\)–order polynomial in \(t\)
  • \(k+1\)–knot restricted cubic spline (one linear term, \(k-1\) nonlinear terms)
B

7.2.2 Model for Mean Profile

  • A model for mean time-response profile without interactions between time and any \(X\):
    \(E[Y_{it} | X_{i}] = X_{i}\beta + \gamma_{1}g_{1}(t) + \gamma_{2}g_{2}(t) + \ldots + \gamma_{k}g_{k}(t)\)
  • Model with interactions between time and some \(X\)’s: add product terms for desired interaction effects
  • Example: To allow the mean time trend for subjects in group 1 (reference group) to be arbitrarily different from time trend for subjects in group 2, have a dummy variable for group 2, a time “main effect” curve with \(k\) d.f. and all \(k\) products of these time components with the dummy variable for group 2
  • Time should be modeled using indicator variables only when time is really discrete, e.g., when time is in weeks and subjects were followed at exactly the intended weeks. In general time should be modeled continuously (and nonlinearly if there are more than 2 followup times) using actual visit dates instead of intended dates (Donohue et al., n.d.).
C

7.2.3 Model Specification for Treatment Comparisons

  • In studies comparing two or more treatments, a response is often measured at baseline (pre-randomization)
  • Analyst has the option to use this measurement as \(Y_{i0}\) or as part of \(X_{i}\)
D

For RCTs, I draw a sharp line at the point when the intervention begins. The LHS [left hand side of the model equation] is reserved for something that is a response to treatment. Anything before this point can potentially be included as a covariate in the regression model. This includes the “baseline” value of the outcome variable. Indeed, the best predictor of the outcome at the end of the study is typically where the patient began at the beginning. It drinks up a lot of variability in the outcome; and, the effect of other covariates is typically mediated through this variable.

I treat anything after the intervention begins as an outcome. In the western scientific method, an “effect” must follow the “cause” even if by a split second.

Note that an RCT is different than a cohort study. In a cohort study, “Time 0” is not terribly meaningful. If we want to model, say, the trend over time, it would be legitimate, in my view, to include the “baseline” value on the LHS of that regression model.

Now, even if the intervention, e.g., surgery, has an immediate effect, I would include still reserve the LHS for anything that might legitimately be considered as the response to the intervention. So, if we cleared a blocked artery and then measured the MABP, then that would still be included on the LHS.

Now, it could well be that most of the therapeutic effect occurred by the time that the first repeated measure was taken, and then levels off. Then, a plot of the means would essentially be two parallel lines and the treatment effect is the distance between the lines, i.e., the difference in the intercepts.

If the linear trend from baseline to Time 1 continues beyond Time 1, then the lines will have a common intercept but the slopes will diverge. Then, the treatment effect will the difference in slopes.

One point to remember is that the estimated intercept is the value at time 0 that we predict from the set of repeated measures post randomization. In the first case above, the model will predict different intercepts even though randomization would suggest that they would start from the same place. This is because we were asleep at the switch and didn’t record the “action” from baseline to time 1. In the second case, the model will predict the same intercept values because the linear trend from baseline to time 1 was continued thereafter.

More importantly, there are considerable benefits to including it as a covariate on the RHS. The baseline value tends to be the best predictor of the outcome post-randomization, and this maneuver increases the precision of the estimated treatment effect. Additionally, any other prognostic factors correlated with the outcome variable will also be correlated with the baseline value of that outcome, and this has two important consequences. First, this greatly reduces the need to enter a large number of prognostic factors as covariates in the linear models. Their effect is already mediated through the baseline value of the outcome variable. Secondly, any imbalances across the treatment arms in important prognostic factors will induce an imbalance across the treatment arms in the baseline value of the outcome. Including the baseline value thereby reduces the need to enter these variables as covariates in the linear models.

Senn (2006) states that temporally and logically, a “baseline cannot be a response to treatment”, so baseline and response cannot be modeled in an integrated framework.

… one should focus clearly on ‘outcomes’ as being the only values that can be influenced by treatment and examine critically any schemes that assume that these are linked in some rigid and deterministic view to ‘baseline’ values. An alternative tradition sees a baseline as being merely one of a number of measurements capable of improving predictions of outcomes and models it in this way.

The final reason that baseline cannot be modeled as the response at time zero is that many studies have inclusion/exclusion criteria that include cutoffs on the baseline variable. In other words, the baseline measurement comes from a truncated distribution. In general it is not appropriate to model the baseline with the same distributional shape as the follow-up measurements. Thus the approaches recommended by Liang & Zeger (2000) and Liu et al. (2009) are problematic1.

E

1 In addition to this, one of the paper’s conclusions that analysis of covariance is not appropriate if the population means of the baseline variable are not identical in the treatment groups is not correct (Senn, 2006). See Kenward et al. (2010) for a rebuke of Liu et al. (2009).

7.3 Modeling Within-Subject Dependence

  • Random effects and mixed effects models have become very popular
  • Disadvantages:
    • Induced correlation structure for \(Y\) may be unrealistic
    • Numerically demanding
    • Require complex approximations for distributions of test statistics
  • Conditional random effects vs. (subject-) marginal models:
    • Random effects are subject-conditional
    • Random effects models are needed to estimate responses for individual subjects
    • Models without random effects are marginalized with respect to subject-specific effects
    • They are natural when the interest is on group-level (i.e., covariate-specific but not patient-specific) parameters (e.g., overall treatment effect)
    • Random effects are natural when there is clustering at more than the subject level (multi-level models)
  • Extended linear model (marginal; with no random effects) is a logical extension of the univariate model (e.g., few statisticians use subject random effects for univariate \(Y\))
  • This was known as growth curve models and generalized least squares (Goldstein, 1989; Potthoff & Roy, 1964) and was developed long before mixed effect models became popular
  • Pinheiro and Bates (Section~5.1.2) state that “in some applications, one may wish to avoid incorporating random effects in the model to account for dependence among observations, choosing to use the within-group component \(\Lambda_{i}\) to directly model variance-covariance structure of the response.”
  • We will assume that \(Y_{it} | X_{i}\) has a multivariate normal distribution with mean given above and with variance-covariance matrix \(V_{i}\), an \(n_{i}\times n_{i}\) matrix that is a function of \(t_{i1}, \ldots, t_{in_{i}}\)
  • We further assume that the diagonals of \(V_{i}\) are all equal
  • Procedure can be generalized to allow for heteroscedasticity over time or with respect to \(X\) (e.g., males may be allowed to have a different variance than females)
  • This extended linear model has the following assumptions:
    • all the assumptions of OLS at a single time point including correct modeling of predictor effects and univariate normality of responses conditional on \(X\)
    • the distribution of two responses at two different times for the same subject, conditional on \(X\), is bivariate normal with a specified correlation coefficient
    • the joint distribution of all \(n_{i}\) responses for the \(i^{th}\) subject is multivariate normal with the given correlation pattern (which implies the previous two distributional assumptions)
    • responses from any times for any two different subjects are uncorrelated
FGH
What Methods To Use for Repeated Measurements / Serial Data? 2 3
Repeated Measures ANOVA GEE Mixed Effects Models GLS Markov LOCF Summary Statistic4
Assumes normality × × ×
Assumes independence of measurements within subject ×5 ×6
Assumes a correlation structure7 × ×8 × × ×
Requires same measurement times for all subjects × ?
Does not allow smooth modeling of time to save d.f. ×
Does not allow adjustment for baseline covariates ×
Does not easily extend to non-continuous \(Y\) × ×
Loses information by not using intermediate measurements ×9 ×
Does not allow widely varying # observations per subject × ×10 × ×11
Does not allow for subjects to have distinct trajectories12 × × × × ×
Assumes subject-specific effects are Gaussian ×
Badly biased if non-random dropouts ? × ×
Biased in general ×
Harder to get tests & CLs ×13 ×14
Requires large # subjects/clusters ×
SEs are wrong ×15 ×
Assumptions are not verifiable in small samples × N/A × × ×
Does not extend to complex settings such as time-dependent covariates and dynamic 16 models × × × × ?

2 Thanks to Charles Berry, Brian Cade, Peter Flom, Bert Gunter, and Leena Choi for valuable input.

3 GEE: generalized estimating equations; GLS: generalized least squares; LOCF: last observation carried forward.

4 E.g., compute within-subject slope, mean, or area under the curve over time. Assumes that the summary measure is an adequate summary of the time profile and assesses the relevant treatment effect.

5 Unless one uses the Huynh-Feldt or Greenhouse-Geisser correction

6 For full efficiency, if using the working independence model

7 Or requires the user to specify one

8 For full efficiency of regression coefficient estimates

9 Unless the last observation is missing

10 The cluster sandwich variance estimator used to estimate SEs in GEE does not perform well in this situation, and neither does the working independence model because it does not weight subjects properly.

11 Unless one knows how to properly do a weighted analysis

12 Or users population averages

13 Unlike GLS, does not use standard maximum likelihood methods yielding simple likelihood ratio \(\chi^2\) statistics. Requires high-dimensional integration to marginalize random effects, using complex approximations, and if using SAS, unintuitive d.f. for the various tests.

14 Because there is no correct formula for SE of effects; ordinary SEs are not penalized for imputation and are too small

15 If correction not applied

16 E.g., a model with a predictor that is a lagged value of the response variable

  • Markov models use ordinary univariate software and are very flexible
  • They apply the same way to binary, ordinal, nominal, and continuous Y
  • They require post-fitting calculations to get probabilities, means, and quantiles that are not conditional on the previous Y value
I

Gardiner et al. (2009) compared several longitudinal data models, especially with regard to assumptions and how regression coefficients are estimated. Peters et al. (2012) have an empirical study confirming that the “use all available data” approach of likelihood–based longitudinal models makes imputation of follow-up measurements unnecessary.

J

7.4 Parameter Estimation Procedure

  • Generalized least squares
  • Like weighted least squares but uses a covariance matrix that is not diagonal
  • Each subject can have her own shape of \(V_{i}\) due to each subject being measured at a different set of times
  • Maximum likelihood
  • Newton-Raphson or other trial-and-error methods used for estimating parameters
  • For small number of subjects, advantages in using REML (restricted maximum likelihood) instead of ordinary MLE (Diggle et al., 2002, p. Section~5.3), (Pinheiro & Bates, 2000, p. Chapter~5), Goldstein (1989) (esp. to get more unbiased estimate of the covariance matrix)
  • When imbalances are not severe, OLS fitted ignoring subject identifiers may be efficient
    • But OLS standard errors will be too small as they don’t take intra-cluster correlation into account
    • May be rectified by substituting covariance matrix estimated from Huber-White cluster sandwich estimator or from cluster bootstrap
  • When imbalances are severe and intra-subject correlations are strong, OLS is not expected to be efficient because it gives equal weight to each observation
    • a subject contributing two distant observations receives \(\frac{1}{5}\) the weight of a subject having 10 tightly-spaced observations
KLM

7.5 Common Correlation Structures

  • Usually restrict ourselves to isotropic correlation structures — correlation between responses within subject at two times depends only on a measure of distance between the two times, not the individual times
  • We simplify further and assume depends on \(|t_{1} - t_{2}|\)
  • Can speak interchangeably of correlations of residuals within subjects or correlations between responses measured at different times on the same subject, conditional on covariates \(X\)
  • Assume that the correlation coefficient for \(Y_{it_{1}}\) vs. \(Y_{it_{2}}\) conditional on baseline covariates \(X_{i}\) for subject \(i\) is \(h(|t_{1} - t_{2}|, \rho)\), where \(\rho\) is a vector (usually a scalar) set of fundamental correlation parameters
  • Some commonly used structures when times are continuous and are not equally spaced (Pinheiro & Bates, 2000, Section 5.3.3) (nlme correlation function names are at the right if the structure is implemented in nlme):
NO
Table 7.1: Some longitudinal data correlation structures
Structure nlme Function
Compound symmetry: \(h = \rho\) if \(t_{1} \neq t_{2}\), 1 if \(t_{1}=t_{2}\) 17 corCompSymm
Autoregressive-moving average lag 1: \(h = \rho^{|t_{1} - t_{2}|} = \rho^s\) where \(s = |t_{1}-t_{2}|\) corCAR1
Exponential: \(h = \exp(-s/\rho)\) corExp
Gaussian: \(h = \exp[-(s/\rho)^2]\) corGaus
Linear: \(h = (1 - s/\rho)[s < \rho]\) corLin
Rational quadratic: \(h = 1 - (s/\rho)^{2}/[1+(s/\rho)^{2}]\) corRatio
Spherical: \(h = [1-1.5(s/\rho)+0.5(s/\rho)^{3}][s < \rho]\) corSpher
Linear exponent AR(1): \(h = \rho^{d_{min} + \delta\frac{s - d_{min}}{d_{max} - d_{min}}}\), 1 if \(t_{1}=t_{2}\) Simpson et al. (2010)

17 Essentially what two-way ANOVA assumes

The structures 3-7 use \(\rho\) as a scaling parameter, not as something restricted to be in \([0,1]\)

7.6 Checking Model Fit

  • Constant variance assumption: usual residual plots
  • Normality assumption: usual qq residual plots
  • Correlation pattern: Variogram
    • Estimate correlations of all possible pairs of residuals at different time points
    • Pool all estimates at same absolute difference in time \(s\)
    • Variogram is a plot with \(y = 1 - \hat{h}(s, \rho)\) vs. \(s\) on the \(x\)-axis
    • Superimpose the theoretical variogram assumed by the model
P

7.7 R Software

  • Nonlinear mixed effects model package of Pinheiro & Bates
  • For linear models, fitting functions are
    • lme for mixed effects models
    • gls for generalized least squares without random effects
  • For this version the rms package has Gls so that many features of rms can be used:
    • anova: all partial Wald tests, test of linearity, pooled tests
    • summary: effect estimates (differences in \(\hat{Y}\)) and confidence limits, can be plotted
    • plot, ggplot, plotp: continuous effect plots
    • nomogram: nomogram
    • Function: generate R function code for fitted model
    • latex:  representation of fitted model
Q

In addition, Gls has a bootstrap option (hence you do not use rms’s bootcov for Gls fits).
To get regular gls functions named anova (for likelihood ratio tests, AIC, etc.) or summary use anova.gls or summary.gls * nlme package has many graphics and fit-checking functions * Several functions will be demonstrated in the case study

7.8 Case Study

Consider the dataset in Table~6.9 of Davis[davis-repmeas, pp. 161-163] from a multi-center, randomized controlled trial of botulinum toxin type B (BotB) in patients with cervical dystonia from nine U.S. sites.

  • Randomized to placebo (\(N=36\)), 5000 units of BotB (\(N=36\)), 10,000 units of BotB (\(N=37\))
  • Response variable: total score on Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), measuring severity, pain, and disability of cervical dystonia (high scores mean more impairment)
  • TWSTRS measured at baseline (week 0) and weeks 2, 4, 8, 12, 16 after treatment began
  • Dataset cdystonia from web site
R

7.8.1 Graphical Exploration of Data

Code
require(rms)
require(data.table)
options(prType='html')    # for model print, summary, anova, validate
getHdata(cdystonia)
setDT(cdystonia)          # convert to data.table
cdystonia[, uid := paste(site, id)]   # unique subject ID

# Tabulate patterns of subjects' time points
g <- function(w) paste(sort(unique(w)), collapse=' ')
cdystonia[, table(tapply(week, uid, g))]

            0         0 2 4   0 2 4 12 16       0 2 4 8    0 2 4 8 12 
            1             1             3             1             1 
0 2 4 8 12 16    0 2 4 8 16   0 2 8 12 16   0 4 8 12 16      0 4 8 16 
           94             1             2             4             1 
Code
# Plot raw data, superposing subjects
xl <- xlab('Week'); yl <- ylab('TWSTRS-total score')
ggplot(cdystonia, aes(x=week, y=twstrs, color=factor(id))) +
       geom_line() + xl + yl + facet_grid(treat ~ site) +
       guides(color=FALSE)
Figure 7.1: Time profiles for individual subjects, stratified by study site and dose
Code
# Show quartiles
g <- function(x) {
  k <- as.list(quantile(x, (1 : 3) / 4, na.rm=TRUE))
  names(k) <- .q(Q1, Q2, Q3)
  k
}
cdys <- cdystonia[, g(twstrs), by=.(treat, week)]
ggplot(cdys, aes(x=week, y=Q2)) + xl + yl + ylim(0, 70) +
  geom_line() + facet_wrap(~ treat, nrow=2) +
  geom_ribbon(aes(ymin=Q1, ymax=Q3), alpha=0.2)
Figure 7.2: Quartiles of TWSTRS stratified by dose
Code
# Show means with bootstrap nonparametric CLs
cdys <-  cdystonia[, as.list(smean.cl.boot(twstrs)),
                   by = list(treat, week)]
ggplot(cdys, aes(x=week, y=Mean)) + xl + yl + ylim(0, 70) +
  geom_line() + facet_wrap(~ treat, nrow=2) +
  geom_ribbon(aes(x=week, ymin=Lower, ymax=Upper), alpha=0.2)
Figure 7.3: Mean responses and nonparametric bootstrap 0.95 confidence limits for population means, stratified by dose

Model with \(Y_{i0}\) as Baseline Covariate

Code
baseline <- cdystonia[week == 0]
baseline[, week := NULL]
setnames(baseline, 'twstrs', 'twstrs0')
followup <- cdystonia[week > 0, .(uid, week, twstrs)]
setkey(baseline, uid)
setkey(followup, uid, week)
both     <- Merge(baseline, followup, id = ~ uid)
         Vars Obs Unique IDs IDs in #1 IDs not in #1
baseline    7 109        109        NA            NA
followup    3 522        108       108             0
Merged      9 523        109       109             0

Number of unique IDs in any data frame : 109 
Number of unique IDs in all data frames: 108 
Code
# Remove person with no follow-up record
both     <- both[! is.na(week)]
dd       <- datadist(both)
options(datadist='dd')

7.8.2 Using Generalized Least Squares

We stay with baseline adjustment and use a variety of correlation structures, with constant variance. Time is modeled as a restricted cubic spline with 3 knots, because there are only 3 unique interior values of week.

S
Code
require(nlme)
cp <- list(corCAR1,corExp,corCompSymm,corLin,corGaus,corSpher)
z  <- vector('list',length(cp))
for(k in 1:length(cp)) {
  z[[k]] <- gls(twstrs ~ treat * rcs(week, 3) +
                rcs(twstrs0, 3) + rcs(age, 4) * sex, data=both,
                correlation=cp[[k]](form = ~week | uid))
}
anova(z[[1]],z[[2]],z[[3]],z[[4]],z[[5]],z[[6]])
       Model df      AIC      BIC    logLik
z[[1]]     1 20 3553.906 3638.357 -1756.953
z[[2]]     2 20 3553.906 3638.357 -1756.953
z[[3]]     3 20 3587.974 3672.426 -1773.987
z[[4]]     4 20 3575.079 3659.531 -1767.540
z[[5]]     5 20 3621.081 3705.532 -1790.540
z[[6]]     6 20 3570.958 3655.409 -1765.479

AIC computed above is set up so that smaller values are best. From this the continuous-time AR1 and exponential structures are tied for the best. For the remainder of the analysis use corCAR1, using Gls.

Keselman et al. (1998) did a simulation study to study the reliability of AIC for selecting the correct covariance structure in repeated measurement models. In choosing from among 11 structures, AIC selected the correct structure 47% of the time. Gurka et al. (2011) demonstrated that fixed effects in a mixed effects model can be biased, independent of sample size, when the specified covariate matrix is more restricted than the true one.
Code
a <- Gls(twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) +
         rcs(age, 4) * sex, data=both,
         correlation=corCAR1(form=~week | uid))
a

Generalized Least Squares Fit by REML

Gls(model = twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) + 
    rcs(age, 4) * sex, data = both, correlation = corCAR1(form = ~week | 
    uid))
Obs 522 Log-restricted-likelihood -1756.95
Clusters 108 Model d.f. 17
g 11.334 σ 8.5917
d.f. 504
β S.E. t Pr(>|t|)
Intercept  -0.3093  11.8804 -0.03 0.9792
treat=5000U   0.4344   2.5962 0.17 0.8672
treat=Placebo   7.1433   2.6133 2.73 0.0065
week   0.2879   0.2973 0.97 0.3334
week'   0.7313   0.3078 2.38 0.0179
twstrs0   0.8071   0.1449 5.57 <0.0001
twstrs0'   0.2129   0.1795 1.19 0.2360
age  -0.1178   0.2346 -0.50 0.6158
age'   0.6968   0.6484 1.07 0.2830
age''  -3.4018   2.5599 -1.33 0.1845
sex=M  24.2802  18.6208 1.30 0.1929
treat=5000U × week   0.0745   0.4221 0.18 0.8599
treat=Placebo × week  -0.1256   0.4243 -0.30 0.7674
treat=5000U × week'  -0.4389   0.4363 -1.01 0.3149
treat=Placebo × week'  -0.6459   0.4381 -1.47 0.1411
age × sex=M  -0.5846   0.4447 -1.31 0.1892
age' × sex=M   1.4652   1.2388 1.18 0.2375
age'' × sex=M  -4.0338   4.8123 -0.84 0.4023
Correlation Structure: Continuous AR(1)
 Formula: ~week | uid 
 Parameter estimate(s):
      Phi 
0.8666689 

\(\hat{\rho} = 0.8672\), the estimate of the correlation between two measurements taken one week apart on the same subject. The estimated correlation for measurements 10 weeks apart is \(0.8672^{10} = 0.24\).

T
Code
v <- Variogram(a, form=~ week | uid)
plot(v)
Figure 7.4: Variogram, with assumed correlation pattern superimposed

Check constant variance and normality assumptions:

U
Code
both$resid <- r <- resid(a); both$fitted <- fitted(a)
yl <- ylab('Residuals')
p1 <- ggplot(both, aes(x=fitted, y=resid)) + geom_point() +
      facet_grid(~ treat) + yl
p2 <- ggplot(both, aes(x=twstrs0, y=resid)) + geom_point()+yl
p3 <- ggplot(both, aes(x=week, y=resid)) + yl + ylim(-20,20) +
      stat_summary(fun.data="mean_sdl", geom='smooth')
p4 <- ggplot(both, aes(sample=resid)) + stat_qq() +
      geom_abline(intercept=mean(r), slope=sd(r)) + yl
gridExtra::grid.arrange(p1, p2, p3, p4, ncol=2)
Figure 7.5: Three residual plots to check for absence of trends in central tendency and in variability. Upper right panel shows the baseline score on the \(x\)-axis. Bottom left panel shows the mean \(\pm 2\times\) SD. Bottom right panel is the QQ plot for checking normality of residuals from the GLS fit.

Now get hypothesis tests, estimates, and graphically interpret the model.

Code
anova(a)
Wald Statistics for twstrs
χ2 d.f. P
treat (Factor+Higher Order Factors) 22.11 6 0.0012
All Interactions 14.94 4 0.0048
week (Factor+Higher Order Factors) 77.27 6 <0.0001
All Interactions 14.94 4 0.0048
Nonlinear (Factor+Higher Order Factors) 6.61 3 0.0852
twstrs0 233.83 2 <0.0001
Nonlinear 1.41 1 0.2354
age (Factor+Higher Order Factors) 9.68 6 0.1388
All Interactions 4.86 3 0.1826
Nonlinear (Factor+Higher Order Factors) 7.59 4 0.1077
sex (Factor+Higher Order Factors) 5.67 4 0.2252
All Interactions 4.86 3 0.1826
treat × week (Factor+Higher Order Factors) 14.94 4 0.0048
Nonlinear 2.27 2 0.3208
Nonlinear Interaction : f(A,B) vs. AB 2.27 2 0.3208
age × sex (Factor+Higher Order Factors) 4.86 3 0.1826
Nonlinear 3.76 2 0.1526
Nonlinear Interaction : f(A,B) vs. AB 3.76 2 0.1526
TOTAL NONLINEAR 15.03 8 0.0586
TOTAL INTERACTION 19.75 7 0.0061
TOTAL NONLINEAR + INTERACTION 28.54 11 0.0027
TOTAL 322.98 17 <0.0001
Code
plot(anova(a))
Figure 7.6: Results of anova.rms from generalized least squares fit with continuous time AR1 correlation structure
Code
ylm <- ylim(25, 60)
p1 <- ggplot(Predict(a, week, treat, conf.int=FALSE),
             adj.subtitle=FALSE, legend.position='top') + ylm
p2 <- ggplot(Predict(a, twstrs0), adj.subtitle=FALSE) + ylm
p3 <- ggplot(Predict(a, age, sex), adj.subtitle=FALSE,
             legend.position='top') + ylm
gridExtra::grid.arrange(p1, p2, p3, ncol=2)
Figure 7.7: Estimated effects of time, baseline TWSTRS, age, and sex
Code
summary(a)  # Shows for week 8
Effects   Response: twstrs
Low High Δ Effect S.E. Lower 0.95 Upper 0.95
week 4 12 8 6.6910 1.1060 4.524 8.858
twstrs0 39 53 14 13.5500 0.8862 11.810 15.290
age 46 65 19 2.5030 2.0510 -1.518 6.523
treat --- 5000U:10000U 1 2 0.5917 1.9980 -3.325 4.508
treat --- Placebo:10000U 1 3 5.4930 2.0040 1.565 9.421
sex --- M:F 1 2 -1.0850 1.7790 -4.571 2.401
Code
# To get results for week 8 for a different reference group
# for treatment, use e.g. summary(a, week=4, treat='Placebo')

# Compare low dose with placebo, separately at each time
k1 <- contrast(a, list(week=c(2,4,8,12,16), treat='5000U'),
                  list(week=c(2,4,8,12,16), treat='Placebo'))
options(width=80)
print(k1, digits=3)
    week twstrs0 age sex Contrast S.E.  Lower  Upper     Z Pr(>|z|)
1      2      46  56   F    -6.31 2.10 -10.43 -2.186 -3.00   0.0027
2      4      46  56   F    -5.91 1.82  -9.47 -2.349 -3.25   0.0011
3      8      46  56   F    -4.90 2.01  -8.85 -0.953 -2.43   0.0150
4*    12      46  56   F    -3.07 1.75  -6.49  0.361 -1.75   0.0795
5*    16      46  56   F    -1.02 2.10  -5.14  3.092 -0.49   0.6260

Redundant contrasts are denoted by *

Confidence intervals are 0.95 individual intervals
Code
# Compare high dose with placebo
k2 <- contrast(a, list(week=c(2,4,8,12,16), treat='10000U'),
                  list(week=c(2,4,8,12,16), treat='Placebo'))
print(k2, digits=3)
    week twstrs0 age sex Contrast S.E.  Lower Upper     Z Pr(>|z|)
1      2      46  56   F    -6.89 2.07 -10.96 -2.83 -3.32   0.0009
2      4      46  56   F    -6.64 1.79 -10.15 -3.13 -3.70   0.0002
3      8      46  56   F    -5.49 2.00  -9.42 -1.56 -2.74   0.0061
4*    12      46  56   F    -1.76 1.74  -5.17  1.65 -1.01   0.3109
5*    16      46  56   F     2.62 2.09  -1.47  6.71  1.25   0.2099

Redundant contrasts are denoted by *

Confidence intervals are 0.95 individual intervals
Code
k1 <- as.data.frame(k1[c('week', 'Contrast', 'Lower', 'Upper')])
p1 <- ggplot(k1, aes(x=week, y=Contrast)) + geom_point() +
      geom_line() + ylab('Low Dose - Placebo') +
      geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)
k2 <- as.data.frame(k2[c('week', 'Contrast', 'Lower', 'Upper')])
p2 <- ggplot(k2, aes(x=week, y=Contrast)) + geom_point() +
      geom_line() + ylab('High Dose - Placebo') +
      geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)
gridExtra::grid.arrange(p1, p2, ncol=2)
Figure 7.8: Contrasts and 0.95 confidence limits from GLS fit

Although multiple d.f. tests such as total treatment effects or treatment \(\times\) time interaction tests are comprehensive, their increased degrees of freedom can dilute power. In a treatment comparison, treatment contrasts at the last time point (single d.f. tests) are often of major interest. Such contrasts are informed by all the measurements made by all subjects (up until dropout times) when a smooth time trend is assumed.

V
Code
n <- nomogram(a, age=c(seq(20, 80, by=10), 85))
plot(n, cex.axis=.55, cex.var=.8, lmgp=.25)  # Figure (*\ref{fig:longit-nomogram}*)
Figure 7.9: Nomogram from GLS fit. Second axis is the baseline score.

7.8.3 Bayesian Proportional Odds Random Effects Model

  • Develop a \(y\)-transformation invariant longitudinal model
  • Proportional odds model with no grouping of TWSTRS scores
  • Bayesian random effects model
  • Random effects Gaussian with exponential prior distribution for its SD, with mean 1.0
  • Compound symmetry correlation structure
  • Demonstrates a large amount of patient-to-patient intercept variability
W
Code
require(rmsb)
cmdstanr::set_cmdstan_path(cmdstan.loc)
# cmdstan.loc is defined in ~/.Rprofile
options(mc.cores=parallel::detectCores() - 1, rmsb.backend='cmdstan')
bpo <- blrm(twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) +
            rcs(age, 4) * sex + cluster(uid), data=both, file='bpo.rds')
# file= means that after the first time the model is run, it will not
# be re-run unless the data, fitting options, or underlying Stan code change
stanDx(bpo)
Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

The following parameters had rank-normalized split R-hat greater than 1.01:
  alpha[4], alpha[5], alpha[6], alpha[7], alpha[8]
Such high values indicate incomplete mixing and biased estimation.
You should consider regularizing your model with additional prior information or a more effective parameterization.

Processing complete.

EBFMI: 0.804 0.812 0.812 0.748 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.003     1006     1795
2   alpha[2] 1.009      559     1486
3   alpha[3] 1.013      454      797
4   alpha[4] 1.015      415      893
5   alpha[5] 1.019      332      913
6   alpha[6] 1.019      345      945
7   alpha[7] 1.019      330      634
8   alpha[8] 1.016      326      570
9   alpha[9] 1.014      367      970
10 alpha[10] 1.014      348      970
11 alpha[11] 1.015      342      827
12 alpha[12] 1.013      341      581
13 alpha[13] 1.014      335      506
14 alpha[14] 1.014      330      665
15 alpha[15] 1.012      330      549
16 alpha[16] 1.013      335      551
17 alpha[17] 1.011      336      446
18 alpha[18] 1.012      331      461
19 alpha[19] 1.012      325      485
20 alpha[20] 1.013      315      401
21 alpha[21] 1.013      324      495
22 alpha[22] 1.012      327      553
23 alpha[23] 1.012      330      624
24 alpha[24] 1.013      326      553
25 alpha[25] 1.012      323      549
26 alpha[26] 1.012      324      482
27 alpha[27] 1.013      324      466
28 alpha[28] 1.012      326      456
29 alpha[29] 1.012      328      469
30 alpha[30] 1.012      330      571
31 alpha[31] 1.012      335      646
32 alpha[32] 1.014      330      540
33 alpha[33] 1.013      338      526
34 alpha[34] 1.011      350      628
35 alpha[35] 1.011      362      734
36 alpha[36] 1.010      370      764
37 alpha[37] 1.009      372      723
38 alpha[38] 1.008      396      715
39 alpha[39] 1.007      423      929
40 alpha[40] 1.007      428      891
41 alpha[41] 1.006      445      877
42 alpha[42] 1.006      470      971
43 alpha[43] 1.005      504      922
44 alpha[44] 1.005      512     1054
45 alpha[45] 1.004      550     1264
46 alpha[46] 1.005      555     1249
47 alpha[47] 1.004      601     1433
48 alpha[48] 1.004      620     1518
49 alpha[49] 1.003      691     1640
50 alpha[50] 1.002      719     1369
51 alpha[51] 1.001      760     1597
52 alpha[52] 1.002      831     1732
53 alpha[53] 1.004      879     2025
54 alpha[54] 1.003      937     2078
55 alpha[55] 1.002      947     2028
56 alpha[56] 1.003      947     1950
57 alpha[57] 1.004     1024     1994
58 alpha[58] 1.003     1067     1939
59 alpha[59] 1.002     1143     2253
60 alpha[60] 1.001     1262     1754
61 alpha[61] 1.002     1469     2119
62   beta[1] 1.004      676     1385
63   beta[2] 1.003      822     1649
64   beta[3] 1.002     1891     2413
65   beta[4] 1.002     3366     3005
66   beta[5] 1.002      787     1374
67   beta[6] 1.003      664     1133
68   beta[7] 1.006      627     1396
69   beta[8] 1.004      761     1708
70   beta[9] 1.010      675     1454
71  beta[10] 1.003      732     1233
72  beta[11] 1.001     4002     2976
73  beta[12] 1.002     3113     2501
74  beta[13] 1.001     3981     3009
75  beta[14] 1.000     4000     3160
76  beta[15] 1.002      994     1542
77  beta[16] 1.005      739     1686
78  beta[17] 1.003      777     1252
79 sigmag[1] 1.004      799     1562
Code
print(bpo, intercepts=TRUE)

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.044 for Intercepts

blrm(formula = twstrs ~ treat * rcs(week, 3) + rcs(twstrs0, 3) + 
    rcs(age, 4) * sex + cluster(uid), data = both, file = "bpo.rds")
Mixed Calibration/
Discrimination Indexes
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 522 LOO log L -1745.74±23.68 g 3.849 [3.37, 4.357] C 0.793 [0.785, 0.799]
Draws 4000 LOO IC 3491.49±47.35 gp 0.435 [0.419, 0.448] Dxy 0.585 [0.57, 0.598]
Chains 4 Effective p 178.19±7.65 EV 0.594 [0.54, 0.637]
Time 5.7s B 0.149 [0.139, 0.161] v 11.525 [8.71, 14.515]
p 17 vp 0.148 [0.136, 0.161]
Cluster on uid
Clusters 108
σγ 1.8871 [1.5542, 2.2777]
Mean β Median β S.E. Lower Upper Pr(β>0) Symmetry
y≥7   -1.7274   -1.7742  4.1814   -9.4688   6.8532  0.3358  1.02
y≥9   -2.7200   -2.7711  4.0823  -10.1209   5.6561  0.2527  1.02
y≥10   -3.8880   -3.9793  4.0377  -11.5954   4.2560  0.1737  1.03
y≥11   -4.3324   -4.4262  4.0275  -11.8645   3.8869  0.1430  1.02
y≥13   -4.5310   -4.6491  4.0269  -11.9192   3.8282  0.1328  1.03
y≥14   -4.8849   -4.9717  4.0254  -12.4126   3.3589  0.1135  1.02
y≥15   -5.1917   -5.2938  4.0190  -12.7359   2.8702  0.0998  1.02
y≥16   -5.5747   -5.6737  4.0133  -13.0658   2.5683  0.0828  1.03
y≥17   -6.3829   -6.4913  4.0073  -13.8759   1.6822  0.0558  1.01
y≥18   -6.6423   -6.7445  4.0066  -14.0043   1.5747  0.0490  1.02
y≥19   -6.9296   -7.0210  4.0023  -14.3200   1.2668  0.0442  1.00
y≥20   -7.1258   -7.2406  4.0004  -14.7143   0.8135  0.0395  1.01
y≥21   -7.3090   -7.4159  4.0020  -14.8497   0.7060  0.0355  1.01
y≥22   -7.7281   -7.8264  4.0031  -15.2246   0.3297  0.0278  1.01
y≥23   -7.9951   -8.0860  3.9991  -15.5472   0.0724  0.0230  1.00
y≥24   -8.2783   -8.3666  3.9968  -16.0660   -0.4930  0.0192  1.00
y≥25   -8.5408   -8.6323  3.9992  -16.2031   -0.5736  0.0155  1.01
y≥26   -8.9389   -9.0380  3.9970  -16.5500   -0.9447  0.0120  1.02
y≥27   -9.2287   -9.3146  3.9973  -16.8087   -1.2379  0.0105  1.01
y≥28   -9.4716   -9.5570  3.9958  -17.0796   -1.5456  0.0100  1.02
y≥29   -9.7046   -9.7974  3.9948  -17.1458   -1.6637  0.0092  1.02
y≥30  -10.0067  -10.1049  3.9945  -17.4760   -1.9868  0.0080  1.02
y≥31  -10.2988  -10.3771  3.9942  -17.7485   -2.2288  0.0065  1.02
y≥32  -10.4153  -10.5102  3.9943  -17.8370   -2.3456  0.0063  1.02
y≥33  -10.7820  -10.8693  3.9938  -18.1742   -2.6646  0.0050  1.02
y≥34  -11.0937  -11.1686  3.9955  -18.7153   -3.1827  0.0040  1.02
y≥35  -11.3176  -11.4011  3.9966  -18.9107   -3.3847  0.0035  1.02
y≥36  -11.5635  -11.6424  3.9984  -18.8858   -3.3775  0.0032  1.02
y≥37  -11.8413  -11.9401  3.9999  -19.3419   -3.8245  0.0020  1.02
y≥38  -12.0686  -12.1580  4.0004  -19.6084   -4.0892  0.0013  1.01
y≥39  -12.3166  -12.4063  4.0034  -19.8449   -4.2918  0.0008  1.01
y≥40  -12.5004  -12.5871  4.0057  -20.2888   -4.7209  0.0008  1.01
y≥41  -12.6863  -12.7868  4.0053  -20.4145   -4.8036  0.0008  1.02
y≥42  -13.0105  -13.1123  4.0063  -20.5639   -4.9723  0.0008  1.02
y≥43  -13.2386  -13.3569  4.0082  -20.7500   -5.1231  0.0008  1.01
y≥44  -13.5789  -13.6831  4.0101  -21.2459   -5.6027  0.0005  1.01
y≥45  -13.8971  -13.9948  4.0137  -21.3932   -5.7825  0.0003  1.01
y≥46  -14.1968  -14.2917  4.0153  -21.7639   -6.1426  0.0000  1.00
y≥47  -14.6146  -14.7203  4.0189  -21.9749   -6.3739  0.0000  1.01
y≥48  -14.9042  -15.0027  4.0187  -22.2237   -6.6218  0.0000  1.02
y≥49  -15.2783  -15.3891  4.0202  -22.7384   -7.0780  0.0000  1.01
y≥50  -15.5974  -15.7073  4.0215  -23.4307   -7.7398  0.0000  1.01
y≥51  -16.1270  -16.2307  4.0253  -23.8351   -8.1276  0.0000  1.01
y≥52  -16.4911  -16.5804  4.0274  -24.3294   -8.6112  0.0000  1.02
y≥53  -16.9374  -17.0475  4.0289  -24.7111   -8.9948  0.0000  1.01
y≥54  -17.4391  -17.5334  4.0314  -25.3211   -9.5697  0.0000  1.02
y≥55  -17.8497  -17.9397  4.0318  -25.5889   -9.8046  0.0000  1.01
y≥56  -18.1003  -18.1971  4.0333  -25.5622   -9.8197  0.0000  1.01
y≥57  -18.5677  -18.6520  4.0359  -26.1041  -10.3264  0.0000  1.01
y≥58  -19.1265  -19.2081  4.0419  -26.8012  -10.9281  0.0000  1.00
y≥59  -19.4798  -19.5449  4.0412  -26.8696  -11.0116  0.0000  1.01
y≥60  -19.8076  -19.8704  4.0402  -27.5504  -11.6663  0.0000  1.00
y≥61  -20.5023  -20.5383  4.0469  -28.4060  -12.5504  0.0000  1.00
y≥62  -20.8744  -20.9236  4.0516  -28.7090  -12.7714  0.0000  0.99
y≥63  -21.2819  -21.3214  4.0553  -29.0520  -13.2091  0.0000  0.99
y≥64  -21.4228  -21.4744  4.0558  -29.0780  -13.2350  0.0000  1.00
y≥65  -22.1460  -22.1780  4.0602  -30.4408  -14.5275  0.0000  0.98
y≥66  -22.5267  -22.5818  4.0713  -30.6623  -14.6623  0.0000  0.99
y≥67  -22.9428  -22.9561  4.0703  -31.0823  -14.9831  0.0000  0.98
y≥68  -23.7213  -23.7516  4.0973  -32.1343  -16.0153  0.0000  0.99
y≥71  -24.5860  -24.5888  4.1283  -32.9277  -16.8600  0.0000  1.00
treat=5000U   0.0752   0.0697  0.7327   -1.4503   1.4687  0.5390  1.04
treat=Placebo   2.3515   2.3562  0.7283   0.8231   3.7080  0.9985  0.97
week   0.1215   0.1220  0.0797   -0.0300   0.2810  0.9395  1.02
week'   0.1934   0.1938  0.0872   0.0181   0.3583  0.9840  0.96
twstrs0   0.2290   0.2286  0.0496   0.1353   0.3275  1.0000  0.96
twstrs0'   0.1291   0.1295  0.0622   0.0058   0.2465  0.9808  0.99
age   -0.0186   -0.0171  0.0796   -0.1743   0.1378  0.4142  0.97
age'   0.2046   0.1995  0.2241   -0.2090   0.6670  0.8195  1.01
age''   -1.1094   -1.1000  0.8794   -2.8191   0.6337  0.1075  1.01
sex=M   4.7993   4.7933  6.3918   -7.3607   17.7994  0.7842  0.96
treat=5000U × week   0.0520   0.0519  0.1119   -0.1600   0.2831  0.6870  0.98
treat=Placebo × week   -0.0528   -0.0517  0.1121   -0.2559   0.1746  0.3137  1.00
treat=5000U × week'   -0.1644   -0.1660  0.1207   -0.3980   0.0740  0.0907  1.03
treat=Placebo × week'   -0.1413   -0.1420  0.1214   -0.3819   0.0855  0.1200  0.98
age × sex=M   -0.1053   -0.1062  0.1534   -0.3969   0.2068  0.2382  1.05
age' × sex=M   0.1441   0.1471  0.4289   -0.7157   0.9627  0.6398  0.97
age'' × sex=M   0.0517   0.0499  1.6611   -3.1342   3.2913  0.5138  1.03
Code
a <- anova(bpo)
a
Relative Explained Variation for twstrs. Approximate total model Wald χ2 used in denominators of REV:266.4 [216.7, 346.1].
REV Lower Upper d.f.
treat (Factor+Higher Order Factors) 0.126 0.061 0.216 6
All Interactions 0.089 0.037 0.166 4
week (Factor+Higher Order Factors) 0.542 0.403 0.647 6
All Interactions 0.089 0.037 0.166 4
Nonlinear (Factor+Higher Order Factors) 0.020 0.002 0.063 3
twstrs0 0.683 0.530 0.760 2
Nonlinear 0.016 0.000 0.049 1
age (Factor+Higher Order Factors) 0.023 0.007 0.086 6
All Interactions 0.014 0.002 0.058 3
Nonlinear (Factor+Higher Order Factors) 0.019 0.002 0.067 4
sex (Factor+Higher Order Factors) 0.018 0.001 0.067 4
All Interactions 0.014 0.002 0.058 3
treat × week (Factor+Higher Order Factors) 0.089 0.037 0.166 4
Nonlinear 0.008 0.000 0.040 2
Nonlinear Interaction : f(A,B) vs. AB 0.008 0.000 0.040 2
age × sex (Factor+Higher Order Factors) 0.014 0.002 0.058 3
Nonlinear 0.012 0.000 0.049 2
Nonlinear Interaction : f(A,B) vs. AB 0.012 0.000 0.049 2
TOTAL NONLINEAR 0.051 0.024 0.136 8
TOTAL INTERACTION 0.102 0.052 0.194 7
TOTAL NONLINEAR + INTERACTION 0.132 0.085 0.244 11
TOTAL 1.000 1.000 1.000 17
Code
plot(a)

  • Show the final graphic (high dose:placebo contrast as function of time
  • Intervals are 0.95 highest posterior density intervals
  • \(y\)-axis: log-odds ratio
X
Code
wks <- c(2,4,8,12,16)
k <- contrast(bpo, list(week=wks, treat='10000U'),
                   list(week=wks, treat='Placebo'),
              cnames=paste('Week', wks))
k
           week   Contrast      S.E.      Lower       Upper Pr(Contrast>0)
1  Week 2     2 -2.2458875 0.5916036 -3.3959428 -1.04866305         0.0005
2  Week 4     4 -2.1402989 0.5197470 -3.1918391 -1.12596610         0.0000
3  Week 8     8 -1.7878685 0.5705599 -2.8670544 -0.62817761         0.0005
4* Week 12   12 -0.8704263 0.5151258 -1.9185698  0.08674057         0.0493
5* Week 16   16  0.1882690 0.5944963 -0.9078124  1.42180711         0.6288

Redundant contrasts are denoted by *

Intervals are 0.95 highest posterior density intervals
Contrast is the posterior mean 
Code
plot(k)

Code
k <- as.data.frame(k[c('week', 'Contrast', 'Lower', 'Upper')])
ggplot(k, aes(x=week, y=Contrast)) + geom_point() +
  geom_line() + ylab('High Dose - Placebo') +
  geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)

For each posterior draw compute the difference in means and get an exact (to within simulation error) 0.95 highest posterior density intervals for these differences.

Code
M <- Mean(bpo)   # create R function that computes mean Y from X*beta
k <- contrast(bpo, list(week=wks, treat='10000U'),
                   list(week=wks, treat='Placebo'),
              fun=M, cnames=paste('Week', wks))
plot(k, which='diff') + theme(legend.position='bottom')

Code
f <- function(x) {
  hpd <- HPDint(x, prob=0.95)   # is in rmsb
  r <- c(mean(x), median(x), hpd)
  names(r) <- c('Mean', 'Median', 'Lower', 'Upper')
  r
}
w    <- as.data.frame(t(apply(k$esta - k$estb, 2, f)))
week <- as.numeric(sub('Week ', '', rownames(w)))
ggplot(w, aes(x=week, y=Mean)) + geom_point() +
  geom_line() + ylab('High Dose - Placebo') +
  geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0) +
  scale_y_continuous(breaks=c(-8, -4, 0, 4))

7.8.4 Bayesian Markov Semiparametric Model

  • First-order Markov model
  • Serial correlation induced by Markov model is similar to AR(1) which we already know fits these data
  • Markov model is more likely to fit the data than the random effects model, which induces a compound symmetry correlation structure
  • Models state transitions
  • PO model at each visit, with Y from previous visit conditioned upon just like any covariate
  • Need to uncondition (marginalize) on previous Y to get the time-response profile we usually need
  • Semiparametric model is especially attractive because one can easily “uncondition” a discrete Y model, and the distribution of Y for control subjects can be any shape
  • Let measurement times be \(t_{1}, t_{2}, \dots, t_{m}\), and the measurement for a subject at time \(t\) be denoted \(Y(t)\)
  • First-order Markov model:
Y
\[\begin{array}{ccc} \Pr(Y(t_{i}) \geq y | X, Y(t_{i-1})) &=& \mathrm{expit}(\alpha_{y} + X\beta\\ &+& g(Y(t_{i-1}), t_{i}, t_{i} - t_{i-1})) \end{array}\]
  • \(g\) involves any number of regression coefficients for a main effect of \(t\), the main effect of time gap \(t_{i} - t_{i-1}\) if this is not collinear with absolute time, a main effect of the previous state, and interactions between these
  • Examples of how the previous state may be modeled in \(g\):
    • linear in numeric codes for \(Y\)
    • spline function in same
    • discontinuous bi-linear relationship where there is a slope for in-hospital outcome severity, a separate slope for outpatient outcome severity, and an intercept jump at the transition from inpatient to outpatient (or vice versa)
  • Markov model is quite flexible in handling time trends and serial correlation patterns
  • Can allow for irregular measurement times:
    hbiostat.org/stat/irreg.html

Fit the model and run standard Stan diagnostics.

Code
# Create a new variable to hold previous value of Y for the subject
# For week 2, previous value is the baseline value
setDT(both, key=c('uid', 'week'))
both[, ptwstrs := shift(twstrs), by=uid]
both[week == 2, ptwstrs := twstrs0]
dd <- datadist(both)
bmark <- blrm(twstrs ~  treat * rcs(week, 3) + rcs(ptwstrs, 4) +
                        rcs(age, 4) * sex,
              data=both, file='bmark.rds')
# When adding partial PO terms for week and ptwstrs, z=-1.8, 5.04
stanDx(bmark)
Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.001 0.92 0.921 0.99 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.000     2879     2270
2   alpha[2] 1.001     2494     2897
3   alpha[3] 1.001     2361     2490
4   alpha[4] 1.001     2245     2839
5   alpha[5] 1.002     1999     2353
6   alpha[6] 1.002     1894     2133
7   alpha[7] 1.002     1705     2386
8   alpha[8] 1.002     1884     2438
9   alpha[9] 1.002     2139     2489
10 alpha[10] 1.003     2083     2635
11 alpha[11] 1.002     2156     2808
12 alpha[12] 1.002     2217     2581
13 alpha[13] 1.002     2245     2498
14 alpha[14] 1.002     2520     2912
15 alpha[15] 1.002     2694     2751
16 alpha[16] 1.003     2702     2662
17 alpha[17] 1.003     2906     2516
18 alpha[18] 1.002     3234     2955
19 alpha[19] 1.000     3310     2910
20 alpha[20] 1.000     3469     3220
21 alpha[21] 1.001     3609     3413
22 alpha[22] 1.000     3814     3144
23 alpha[23] 1.000     4093     3242
24 alpha[24] 1.000     4255     3169
25 alpha[25] 1.000     4468     3213
26 alpha[26] 1.001     4680     3322
27 alpha[27] 1.001     4982     3252
28 alpha[28] 1.001     5484     3320
29 alpha[29] 1.000     5576     3027
30 alpha[30] 1.000     5810     3362
31 alpha[31] 1.000     5965     3390
32 alpha[32] 1.000     6066     3451
33 alpha[33] 1.000     6161     3511
34 alpha[34] 1.001     6466     3514
35 alpha[35] 1.001     6416     3405
36 alpha[36] 1.000     6060     3229
37 alpha[37] 1.000     5870     3045
38 alpha[38] 1.001     6371     3221
39 alpha[39] 1.001     5937     3282
40 alpha[40] 1.000     5364     3465
41 alpha[41] 1.000     5369     3604
42 alpha[42] 1.001     5070     3311
43 alpha[43] 1.001     4389     3414
44 alpha[44] 1.000     4278     3076
45 alpha[45] 1.001     4289     2987
46 alpha[46] 1.000     4440     2665
47 alpha[47] 1.000     4423     2990
48 alpha[48] 1.000     4398     3284
49 alpha[49] 1.001     4454     3191
50 alpha[50] 1.001     4245     3162
51 alpha[51] 1.001     4156     3117
52 alpha[52] 1.001     4313     2976
53 alpha[53] 1.000     4026     3077
54 alpha[54] 1.001     3876     2641
55 alpha[55] 1.001     3780     3055
56 alpha[56] 1.002     3868     2840
57 alpha[57] 1.001     3881     2943
58 alpha[58] 1.002     4020     3037
59 alpha[59] 1.002     4049     3191
60 alpha[60] 1.002     3947     3110
61 alpha[61] 1.000     4063     2906
62   beta[1] 1.000     7555     3022
63   beta[2] 1.001     8887     2872
64   beta[3] 1.003     4637     2963
65   beta[4] 1.000     8464     2988
66   beta[5] 1.001     2612     2718
67   beta[6] 1.001     4103     3019
68   beta[7] 1.004     6002     2869
69   beta[8] 1.001     8321     2855
70   beta[9] 1.000     7931     3059
71  beta[10] 1.003     8301     2620
72  beta[11] 1.004     7223     2759
73  beta[12] 1.001     7578     2981
74  beta[13] 1.001     7253     2940
75  beta[14] 1.000     8310     3018
76  beta[15] 1.001     8500     2906
77  beta[16] 1.000     9874     2974
78  beta[17] 1.003     7087     2584
79  beta[18] 1.000     8664     3042
Code
stanDxplot(bmark)

Note that posterior sampling is much more efficient without random effects.

Code
bmark

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.044 for Intercepts

blrm(formula = twstrs ~ treat * rcs(week, 3) + rcs(ptwstrs, 4) + 
    rcs(age, 4) * sex, data = both, file = "bmark.rds")
Frequencies of Missing Values Due to Each Variable
 twstrs   treat    week ptwstrs     age     sex 
      0       0       0       5       0       0 
Mixed Calibration/
Discrimination Indexes
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 517 LOO log L -1785.78±22.28 g 3.25 [2.974, 3.554] C 0.828 [0.825, 0.831]
Draws 4000 LOO IC 3571.55±44.57 gp 0.415 [0.402, 0.428] Dxy 0.656 [0.649, 0.661]
Chains 4 Effective p 89.67±4.82 EV 0.53 [0.491, 0.569]
Time 3.2s B 0.117 [0.114, 0.121] v 8.323 [6.711, 9.649]
p 18 vp 0.132 [0.123, 0.143]
Mode β Mean β Median β S.E. Lower Upper Pr(β>0) Symmetry
treat=5000U   0.2209   0.2145   0.2141  0.5708  -0.8878   1.3087  0.6442  1.03
treat=Placebo   1.8316   1.8402   1.8395  0.5707   0.7299   2.9284  0.9988  0.98
week   0.4865   0.4884   0.4875  0.0824   0.3289   0.6515  1.0000  1.07
week'  -0.2878  -0.2891  -0.2895  0.0871  -0.4721  -0.1264  0.0008  1.00
ptwstrs   0.1998   0.2012   0.2008  0.0268   0.1481   0.2527  1.0000  1.01
ptwstrs'  -0.0622  -0.0652  -0.0649  0.0625  -0.1869   0.0583  0.1452  1.01
ptwstrs''   0.5334   0.5464   0.5419  0.2493   0.0460   1.0206  0.9865  1.01
age  -0.0295  -0.0285  -0.0286  0.0315  -0.0922   0.0322  0.1858  1.01
age'   0.1236   0.1213   0.1226  0.0873  -0.0432   0.2917  0.9215  0.97
age''  -0.5067  -0.4993  -0.5028  0.3466  -1.2184   0.1251  0.0750  1.01
sex=M  -0.4626  -0.3867  -0.4272  2.3755  -4.8913   4.3277  0.4333  1.00
treat=5000U × week  -0.0340  -0.0332  -0.0319  0.1094  -0.2486   0.1787  0.3800  0.96
treat=Placebo × week  -0.2719  -0.2735  -0.2745  0.1111  -0.4803  -0.0461  0.0085  0.99
treat=5000U × week'  -0.0341  -0.0351  -0.0351  0.1172  -0.2742   0.1865  0.3860  1.00
treat=Placebo × week'   0.1197   0.1210   0.1213  0.1191  -0.1084   0.3551  0.8482  0.98
age × sex=M   0.0112   0.0094   0.0101  0.0573  -0.1039   0.1177  0.5665  0.98
age' × sex=M  -0.0510  -0.0473  -0.0469  0.1636  -0.3624   0.2504  0.3895  1.01
age'' × sex=M   0.2616   0.2504   0.2452  0.6402  -0.9799   1.4591  0.6495  1.00
Code
a <- anova(bmark)
a
Relative Explained Variation for twstrs. Approximate total model Wald χ2 used in denominators of REV:457.2 [399.6, 567.5].
REV Lower Upper d.f.
treat (Factor+Higher Order Factors) 0.049 0.025 0.104 6
All Interactions 0.045 0.014 0.092 4
week (Factor+Higher Order Factors) 0.310 0.229 0.391 6
All Interactions 0.045 0.014 0.092 4
Nonlinear (Factor+Higher Order Factors) 0.064 0.025 0.110 3
ptwstrs 0.931 0.856 0.947 3
Nonlinear 0.040 0.013 0.074 2
age (Factor+Higher Order Factors) 0.008 0.003 0.040 6
All Interactions 0.001 0.000 0.017 3
Nonlinear (Factor+Higher Order Factors) 0.005 0.001 0.030 4
sex (Factor+Higher Order Factors) 0.001 0.000 0.020 4
All Interactions 0.001 0.000 0.017 3
treat × week (Factor+Higher Order Factors) 0.045 0.014 0.092 4
Nonlinear 0.004 0.000 0.020 2
Nonlinear Interaction : f(A,B) vs. AB 0.004 0.000 0.020 2
age × sex (Factor+Higher Order Factors) 0.001 0.000 0.017 3
Nonlinear 0.001 0.000 0.014 2
Nonlinear Interaction : f(A,B) vs. AB 0.001 0.000 0.014 2
TOTAL NONLINEAR 0.109 0.070 0.178 9
TOTAL INTERACTION 0.046 0.022 0.103 7
TOTAL NONLINEAR + INTERACTION 0.139 0.094 0.223 12
TOTAL 1.000 1.000 1.000 18
Code
plot(a)

Let’s add subject-level random effects to the model. Smallness of the standard deviation of the random effects provides support for the assumption of conditional independence that we like to make for Markov models and allows us to simplify the model by omitting random effects.

Code
bmarkre <- blrm(twstrs ~  treat * rcs(week, 3) + rcs(ptwstrs, 4) +
                          rcs(age, 4) * sex + cluster(uid),
                data=both, file='bmarkre.rds')
stanDx(bmarkre)
Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)


Checking sampler transitions for divergences.
3 of 4000 (0.07%) transitions ended with a divergence.
These divergent transitions indicate that HMC is not fully able to explore the posterior distribution.
Try increasing adapt delta closer to 1.
If this doesn't remove all divergences, try to reparameterize the model.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete.
Divergent samples: 1 1 1 0 

EBFMI: 1.003 0.997 0.892 0.893 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001     1701     1810
2   alpha[2] 1.001     1388     2274
3   alpha[3] 1.002     1239     1716
4   alpha[4] 1.002     1086     1717
5   alpha[5] 1.003      905     1383
6   alpha[6] 1.003      875     1681
7   alpha[7] 1.003      839     1460
8   alpha[8] 1.002      915     1492
9   alpha[9] 1.004     1050     1368
10 alpha[10] 1.003      990     1138
11 alpha[11] 1.003      963     1327
12 alpha[12] 1.005      976     1356
13 alpha[13] 1.002      966     1265
14 alpha[14] 1.003     1081     1357
15 alpha[15] 1.001     1135     1266
16 alpha[16] 1.001     1179     1365
17 alpha[17] 1.001     1234     1453
18 alpha[18] 1.002     1390     1864
19 alpha[19] 1.002     1507     2019
20 alpha[20] 1.002     1586     2216
21 alpha[21] 1.001     1664     2259
22 alpha[22] 1.000     1715     2542
23 alpha[23] 1.001     1779     1833
24 alpha[24] 1.001     1828     2052
25 alpha[25] 1.001     2156     2143
26 alpha[26] 1.002     2677     2509
27 alpha[27] 1.001     2963     3030
28 alpha[28] 1.001     3346     3237
29 alpha[29] 1.001     3617     3187
30 alpha[30] 1.000     3866     3384
31 alpha[31] 0.999     3909     3267
32 alpha[32] 1.000     3891     3374
33 alpha[33] 1.000     3960     3030
34 alpha[34] 1.001     3920     3294
35 alpha[35] 1.001     3879     3215
36 alpha[36] 1.001     3735     3091
37 alpha[37] 1.002     3794     2943
38 alpha[38] 1.000     3589     3042
39 alpha[39] 1.000     3289     2920
40 alpha[40] 1.001     3122     2714
41 alpha[41] 1.000     3137     2696
42 alpha[42] 1.001     2993     2761
43 alpha[43] 1.001     2663     2643
44 alpha[44] 1.001     2579     2496
45 alpha[45] 1.000     2572     2251
46 alpha[46] 1.000     2559     2815
47 alpha[47] 1.001     2604     2335
48 alpha[48] 1.001     2594     2677
49 alpha[49] 1.001     2639     2749
50 alpha[50] 1.001     2439     2709
51 alpha[51] 1.001     2442     2478
52 alpha[52] 1.001     2222     2403
53 alpha[53] 1.002     2158     2336
54 alpha[54] 1.003     2181     2196
55 alpha[55] 1.002     2358     2482
56 alpha[56] 1.002     2321     2674
57 alpha[57] 1.001     2358     3034
58 alpha[58] 1.001     2482     2809
59 alpha[59] 1.001     2560     2807
60 alpha[60] 1.001     2763     2619
61 alpha[61] 1.001     3389     2504
62   beta[1] 1.001     5188     2657
63   beta[2] 1.000     3838     2012
64   beta[3] 1.000     3041     2425
65   beta[4] 1.001     5950     2925
66   beta[5] 1.000     1430     2155
67   beta[6] 1.001     2559     2333
68   beta[7] 1.000     4143     3452
69   beta[8] 1.002     3871     1973
70   beta[9] 1.000     4420     2334
71  beta[10] 1.000     4552     2845
72  beta[11] 1.001     5141     2534
73  beta[12] 1.001     5326     2817
74  beta[13] 1.002     4672     2678
75  beta[14] 1.004     6015     2854
76  beta[15] 1.001     5363     2766
77  beta[16] 1.001     4220     2621
78  beta[17] 1.003     5240     2734
79  beta[18] 1.006     4708     2375
80 sigmag[1] 1.002     1260     1345
Code
bmarkre

Bayesian Proportional Odds Ordinal Logistic Model

Dirichlet Priors With Concentration Parameter 0.044 for Intercepts

blrm(formula = twstrs ~ treat * rcs(week, 3) + rcs(ptwstrs, 4) + 
    rcs(age, 4) * sex + cluster(uid), data = both, file = "bmarkre.rds")
Frequencies of Missing Values Due to Each Variable
      twstrs        treat         week      ptwstrs          age          sex 
           0            0            0            5            0            0 
cluster(uid) 
           0 
Mixed Calibration/
Discrimination Indexes
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 517 LOO log L -1786.11±22.22 g 3.263 [2.986, 3.591] C 0.828 [0.825, 0.831]
Draws 4000 LOO IC 3572.22±44.44 gp 0.416 [0.402, 0.43] Dxy 0.656 [0.65, 0.661]
Chains 4 Effective p 93.06±4.68 EV 0.532 [0.492, 0.572]
Time 3.8s B 0.117 [0.113, 0.121] v 8.386 [6.878, 9.926]
p 18 vp 0.133 [0.123, 0.143]
Cluster on uid
Clusters 108
σγ 0.1134 [1e-04, 0.3474]
Mean β Median β S.E. Lower Upper Pr(β>0) Symmetry
treat=5000U   0.2099   0.2048  0.5790  -0.9435   1.3322  0.6370  1.04
treat=Placebo   1.8344   1.8344  0.5620   0.7191   2.8612  1.0000  0.99
week   0.4861   0.4861  0.0836   0.3269   0.6537  1.0000  1.00
week'  -0.2853  -0.2840  0.0887  -0.4540  -0.1101  0.0003  1.02
ptwstrs   0.1999   0.1998  0.0263   0.1480   0.2495  1.0000  0.99
ptwstrs'  -0.0643  -0.0643  0.0616  -0.1840   0.0571  0.1467  1.00
ptwstrs''   0.5434   0.5415  0.2466   0.0857   1.0340  0.9875  1.01
age  -0.0293  -0.0297  0.0308  -0.0855   0.0360  0.1668  1.08
age'   0.1238   0.1253  0.0856  -0.0410   0.2884  0.9228  0.93
age''  -0.5093  -0.5142  0.3414  -1.1526   0.1602  0.0712  1.07
sex=M  -0.3718  -0.3634  2.3747  -4.9576   4.4774  0.4415  1.03
treat=5000U × week  -0.0312  -0.0296  0.1102  -0.2350   0.1923  0.3915  0.96
treat=Placebo × week  -0.2715  -0.2719  0.1121  -0.4822  -0.0471  0.0060  1.01
treat=5000U × week'  -0.0374  -0.0396  0.1170  -0.2572   0.1933  0.3752  1.03
treat=Placebo × week'   0.1174   0.1179  0.1230  -0.1086   0.3714  0.8292  1.01
age × sex=M   0.0089   0.0087  0.0572  -0.1042   0.1217  0.5630  0.98
age' × sex=M  -0.0452  -0.0453  0.1662  -0.3616   0.2877  0.3875  1.01
age'' × sex=M   0.2440   0.2465  0.6536  -1.0261   1.5291  0.6508  1.01

The random effects SD is only 0.11 on the logit scale. Also, the standard deviations of all the regression parameter posterior distributions are virtually unchanged with the addition of random effects:

Code
plot(sqrt(diag(vcov(bmark))), sqrt(diag(vcov(bmarkre))),
     xlab='Posterior SDs in Conditional Independence Markov Model',
     ylab='Posterior SDs in Random Effects Markov Model')
abline(a=0, b=1, col=gray(0.85))

So we will use the model omitting random effects.

Show the partial effects of all the predictors, including the effect of the previous measurement of TWSTRS. Also compute high dose:placebo treatment contrasts on these conditional estimates.

Code
ggplot(Predict(bmark))

Code
ggplot(Predict(bmark, week, treat))

Code
k <- contrast(bmark, list(week=wks, treat='10000U'),
                     list(week=wks, treat='Placebo'),
              cnames=paste('Week', wks))
k
           week   Contrast      S.E.      Lower      Upper Pr(Contrast>0)
1  Week 2     2 -1.2932578 0.3843143 -2.0452591 -0.5496478         0.0010
2  Week 4     4 -0.7462953 0.2616461 -1.2691010 -0.2511396         0.0025
3  Week 8     8  0.2266339 0.3506998 -0.4586461  0.9315950         0.7360
4* Week 12   12  0.7155790 0.2639819  0.2193231  1.2639619         0.9940
5* Week 16   16  1.0835281 0.3987639  0.2890083  1.8305381         0.9972

Redundant contrasts are denoted by *

Intervals are 0.95 highest posterior density intervals
Contrast is the posterior mean 
Code
plot(k)

Code
k <- as.data.frame(k[c('week', 'Contrast', 'Lower', 'Upper')])
ggplot(k, aes(x=week, y=Contrast)) + geom_point() +
  geom_line() + ylab('High Dose - Placebo') +
  geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)

Using posterior means for parameter values, compute the probability that at a given week twstrs will be \(\geq 40\) when at the previous visit it was 40. Also show the conditional mean twstrs when it was 40 at the previous visit.

Code
ex <- ExProb(bmark)
ex40 <- function(lp, ...) ex(lp, y=40, ...)
ggplot(Predict(bmark, week, treat, ptwstrs=40, fun=ex40))

Code
ggplot(Predict(bmark, week, treat, ptwstrs=40, fun=Mean(bmark)))

  • Semiparametric models provide not only estimates of tendencies of Y but also estimate the whole distribution of Y
  • Estimate the entire conditional distribution of Y at week 12 for high-dose patients having TWSTRS=42 at week 8
  • Other covariates set to median/mode
  • Use posterior mean of all the cell probabilities
  • Also show pointwise 0.95 highest posterior density intervals
  • To roughly approximate simultaneous confidence bands make the pointwise limits sum to 1 like the posterior means do
Z
Code
# Get median/mode for covariates including ptwstrs (TWSTRS in previous visit)
d <- gendata(bmark)
d
   treat week ptwstrs age sex
1 10000U    8      42  56   F
Code
d$week <- 12
p <- predict(bmark, d, type='fitted.ind')   # defaults to posterior means
yvals <- as.numeric(sub('twstrs=', '', p$y))
lo <- p$Lower / sum(p$Lower)
hi <- p$Upper / sum(p$Upper)
plot(yvals, p$Mean, type='l', xlab='TWSTRS', ylab='',
     ylim=range(c(lo, hi)))
lines(yvals, lo, col=gray(0.8))
lines(yvals, hi, col=gray(0.8))

  • Repeat this showing the variation over 5 posterior draws
A
Code
p <- predict(bmark, d, type='fitted.ind', posterior.summary='all')
cols <- adjustcolor(1 : 10, 0.7)
for(i in 1 : 5) {
  if(i == 1) plot(yvals, p[i, 1, ], type='l', col=cols[1], xlab='TWSTRS', ylab='')
  else lines(yvals, p[i, 1, ], col=cols[i])
}

  • Turn to marginalized (unconditional on previous twstrs) quantities
  • Capitalize on PO model being a multinomial model, just with PO restrictions
  • Manipulations of conditional probabilities to get the unconditional probability that twstrs=y doesn’t need to know about PO
  • Compute all cell probabilities and use the law of total probability recursively \[\Pr(Y_{t} = y | X) = \sum_{j=1}^{k} \Pr(Y_{t} = y | X, Y_{t-1} = j) \Pr(Y_{t-1} = j | X)\]
  • predict.blrm method with type='fitted.ind' computes the needed conditional cell probabilities, optionally for all posterior draws at once
  • Easy to get highest posterior density intervals for derived parameters such as unconditional probabilities or unconditional means
  • Hmisc package soprobMarkovOrdm function (in version 4.6) computes an array of all the state occupancy probabilities for all the posterior draws
B
Code
# Baseline twstrs to 42 in d
# For each dose, get all the posterior draws for all state occupancy
# probabilities for all visit
ylev <- sort(unique(both$twstrs))
tlev <- c('Placebo', '10000U')
R <- list()
for(trt in tlev) {   # separately by treatment
  d$treat <- trt
  u <- soprobMarkovOrdm(bmark, d, wks, ylev,
                        tvarname='week', pvarname='ptwstrs')
  R[[trt]] <- u
}
dim(R[[1]])    # posterior draws x times x distinct twstrs values
[1] 4000    5   62
Code
# For each posterior draw, treatment, and week compute the mean TWSTRS
# Then compute posterior mean of means, and HPD interval
Rmean <- Rmeans <- list()
for(trt in tlev) {
  r <- R[[trt]]
  # Mean Y at each week and posterior draw (mean from a discrete distribution)
  m <- apply(r, 1:2, function(x) sum(ylev * x))
  Rmeans[[trt]] <- m
  # Posterior mean and median and HPD interval over draws
  u <- apply(m, 2, f)   # f defined above
  u <- rbind(week=as.numeric(colnames(u)), u)
  Rmean[[trt]] <- u
}
r <- lapply(Rmean, function(x) as.data.frame(t(x)))
for(trt in tlev) r[[trt]]$treat <- trt
r <- do.call(rbind, r)
ggplot(r, aes(x=week, y=Mean, color=treat)) + geom_line() +
  geom_ribbon(aes(ymin=Lower, ymax=Upper), alpha=0.2, linetype=0)

  • Use the same posterior draws of unconditional probabilities of all values of TWSTRS to get the posterior distribution of differences in mean TWSTRS between high and low dose
C
Code
Dif <- Rmeans$`10000U` - Rmeans$Placebo
dif <- as.data.frame(t(apply(Dif, 2, f)))
dif$week <- as.numeric(rownames(dif))
ggplot(dif, aes(x=week, y=Mean)) + geom_line() +
  geom_ribbon(aes(ymin=Lower, ymax=Upper), alpha=0.2, linetype=0) +
  ylab('High Dose - Placebo TWSTRS')

  • Get posterior mean of all cell probabilities estimates at week 12
  • Distribution of TWSTRS conditional high dose, median age, mode sex
  • Not conditional on week 8 value
D
Code
p <- R$`10000U`[, '12', ]   # 4000 x 62
pmean <- apply(p, 2, mean)
yvals <- as.numeric(names(pmean))
plot(yvals, pmean, type='l', xlab='TWSTRS', ylab='')

7.9 Study Questions

Section 7.2

  1. When should one model the time-response profile using discrete time?

Section 7.3

  1. What makes generalized least squares and mixed effect models relatively robust to non-completely-random dropouts?
  2. What does the last observation carried forward method always violate?

Section 7.4

  1. Which correlation structure do you expect to fit the data when there are rapid repetitions over a short time span? When the follow-up time span is very long?

Section 7.8

  1. What can go wrong if many correlation structures are tested in one dataset?
  2. In a longitudinal intervention study, what is the most typical comparison of interest? Is it best to borrow information in estimating this contrast?