12  Logistic Model Case Study: Survival of Titanic Passengers

Data source: The Titanic Passenger List edited by Michael A. Findlay, originally published in Eaton & Haas (1994) Titanic: Triumph and Tragedy, Patrick Stephens Ltd, and expanded with the help of the Internet community. The original html files were obtained from Philip Hind (1999). The dataset was compiled and interpreted by Thomas Cason. It is available in R and spreadsheet formats from hbiostat.org/data under the name titanic3.

12.1 Descriptive Statistics

Code
require(rms)
options(prType='html')   # for print, summary, anova
getHdata(titanic3)        # get dataset from web site
# List of names of variables to analyze
v <- c('pclass','survived','age','sex','sibsp','parch')
t3 <- titanic3[, v]
units(t3$age) <- 'years'
describe(t3)
t3 Descriptives
t3

6 Variables   1309 Observations

pclass
image
nmissingdistinct
130903
 Value        1st   2nd   3rd
 Frequency    323   277   709
 Proportion 0.247 0.212 0.542 

survived: Survived
nmissingdistinctInfoSumMean
1309020.7085000.382

age: Age years
image
nmissingdistinctInfoMeanpMedianGmd.05.10.25.50.75.90.95
1046263980.99929.882916.06 5142128395057
lowest : 0.1667 0.3333 0.4167 0.6667 0.75 , highest: 70.5 71 74 76 80
sex
nmissingdistinct
130902
 Value      female   male
 Frequency     466    843
 Proportion  0.356  0.644 

sibsp: Number of Siblings/Spouses Aboard
image
nmissingdistinctInfoMeanpMedianGmd
1309070.670.49890.50.777
 Value          0     1     2     3     4     5     8
 Frequency    891   319    42    20    22     6     9
 Proportion 0.681 0.244 0.032 0.015 0.017 0.005 0.007 
For the frequency table, variable is rounded to the nearest 0
parch: Number of Parents/Children Aboard
image
nmissingdistinctInfoMeanpMedianGmd
1309080.5490.38500.6375
 Value          0     1     2     3     4     5     6     9
 Frequency   1002   170   113     8     6     6     2     2
 Proportion 0.765 0.130 0.086 0.006 0.005 0.005 0.002 0.002 
For the frequency table, variable is rounded to the nearest 0
Code
spar(ps=6,rt=3)
dd <- datadist(t3)
# describe distributions of variables to rms
options(datadist='dd')
s <- summary(survived ~ age + sex + pclass +
             cut2(sibsp,0:3) + cut2(parch,0:3), data=t3)
plot(s, main='', subtitles=FALSE)
Figure 12.1: Univariable summaries of Titanic survival

Show 4-way relationships after collapsing levels. Suppress estimates based on \(<25\) passengers.

A
Code
require(ggplot2)
tn <- transform(t3,
  agec = ifelse(age < 21, 'child', 'adult'),
  sibsp= ifelse(sibsp == 0, 'no sib/sp', 'sib/sp'),
  parch= ifelse(parch == 0, 'no par/child', 'par/child'))
g <- function(y) if(length(y) < 25) NA else mean(y)
s <- with(tn, summarize(survived,
           llist(agec, sex, pclass, sibsp, parch), g))
# llist, summarize in Hmisc package
ggplot(subset(s, agec != 'NA'),
  aes(x=survived, y=pclass, shape=sex)) +
  geom_point() + facet_grid(agec ~ sibsp * parch) +
  xlab('Proportion Surviving') + ylab('Passenger Class') +
  scale_x_continuous(breaks=c(0, .5, 1))
Figure 12.2: Multi-way summary of Titanic survival

12.3 Binary Logistic Model with Casewise Deletion of Missing Values

  • First fit a model that is saturated with respect to age, sex, pclass
  • Insufficient variation in sibsp, parch to fit complex interactions or nonlinearities.
  • With age appearing in so many terms, giving too many parameters to age creates instabilities and makes many bootstrap repetitions fail to converge or to yield singular covariance matrices
  • Use AIC to determine the global number of knots for age that is “best for the money” in terms of being the most likely to cross-validate well
Code
for(k in 3 : 5) {
  f <- lrm(survived ~ sex*pclass*rcs(age, k) +
           rcs(age, k)*(sibsp + parch), data=t3)
  cat('k=', k, '  AIC=', AIC(f), '\n')
}
k= 3   AIC= 922.9147 
k= 4   AIC= 916.6481 
k= 5   AIC= 921.2103 
  • 4 knots has best (lowest) AIC and we’ll use that going forward
  • Refit that model with x=TRUE, y=TRUE so can do likelihood ratio (LR) tests
  • But start with Wald tests
Code
f1 <- lrm(survived ~ sex*pclass*rcs(age,4) +
          rcs(age,4)*(sibsp + parch), data=t3, x=TRUE, y=TRUE)
print(f1, r2=1:4)   # print all 4 R^2 measures that use only the global LR chi-square

Logistic Regression Model

lrm(formula = survived ~ sex * pclass * rcs(age, 4) + rcs(age, 
    4) * (sibsp + parch), data = t3, x = TRUE, y = TRUE)
Frequencies of Missing Values Due to Each Variable
survived      sex   pclass      age    sibsp    parch 
       0        0        0      263        0        0 
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1046 LR χ2 561.97 R21046 0.416 C 0.876
0 619 d.f. 31 R231,1046 0.398 Dxy 0.751
1 427 Pr(>χ2) <0.0001 R2758.1 0.524 γ 0.753
max |∂log L/∂β| 4×10-8 R231,758.1 0.504 τa 0.363
Brier 0.129
β S.E. Wald Z Pr(>|Z|)
Intercept   -2.2942  3.4139 -0.67 0.5016
sex=male   6.3349  4.2247 1.50 0.1337
pclass=2nd   14.3545  8.4676 1.70 0.0900
pclass=3rd   3.5271  3.2329 1.09 0.2753
age   0.3671  0.2187 1.68 0.0932
age'   -0.8270  0.5684 -1.45 0.1457
age''   2.9159  2.3083 1.26 0.2065
sibsp   -0.8241  0.3173 -2.60 0.0094
parch   0.2397  0.7406 0.32 0.7462
sex=male × pclass=2nd  -13.7220  9.0536 -1.52 0.1296
sex=male × pclass=3rd   -6.3991  4.3000 -1.49 0.1367
sex=male × age   -0.5937  0.2582 -2.30 0.0215
sex=male × age'   1.2395  0.6406 1.93 0.0530
sex=male × age''   -4.3891  2.5546 -1.72 0.0858
pclass=2nd × age   -0.9460  0.4793 -1.97 0.0484
pclass=3rd × age   -0.4106  0.2097 -1.96 0.0502
pclass=2nd × age'   2.2112  1.0827 2.04 0.0411
pclass=3rd × age'   0.7450  0.5632 1.32 0.1859
pclass=2nd × age''   -8.5918  4.1622 -2.06 0.0390
pclass=3rd × age''   -2.0708  2.3726 -0.87 0.3828
age × sibsp   0.0035  0.0277 0.13 0.9005
age' × sibsp   0.1309  0.1076 1.22 0.2237
age'' × sibsp   -0.7549  0.5438 -1.39 0.1651
age × parch   0.0145  0.0468 0.31 0.7558
age' × parch   -0.1092  0.1262 -0.87 0.3869
age'' × parch   0.5123  0.5365 0.95 0.3396
sex=male × pclass=2nd × age   0.7994  0.5140 1.56 0.1199
sex=male × pclass=3rd × age   0.4755  0.2641 1.80 0.0718
sex=male × pclass=2nd × age'   -1.9165  1.1706 -1.64 0.1016
sex=male × pclass=3rd × age'   -0.7422  0.6754 -1.10 0.2719
sex=male × pclass=2nd × age''   7.6432  4.5357 1.69 0.0920
sex=male × pclass=3rd × age''   1.1688  2.8864 0.40 0.6855
Code
anova(f1)
Wald Statistics for survived
χ2 d.f. P
sex (Factor+Higher Order Factors) 187.59 12 <0.0001
All Interactions 60.55 11 <0.0001
pclass (Factor+Higher Order Factors) 100.33 16 <0.0001
All Interactions 47.44 14 <0.0001
age (Factor+Higher Order Factors) 61.35 24 <0.0001
All Interactions 37.51 21 0.0147
Nonlinear (Factor+Higher Order Factors) 28.15 16 0.0303
sibsp (Factor+Higher Order Factors) 20.38 4 0.0004
All Interactions 11.84 3 0.0080
parch (Factor+Higher Order Factors) 3.79 4 0.4349
All Interactions 3.79 3 0.2848
sex × pclass (Factor+Higher Order Factors) 43.72 8 <0.0001
sex × age (Factor+Higher Order Factors) 14.39 9 0.1093
Nonlinear (Factor+Higher Order Factors) 12.54 6 0.0510
Nonlinear Interaction : f(A,B) vs. AB 4.95 2 0.0843
pclass × age (Factor+Higher Order Factors) 18.59 12 0.0989
Nonlinear (Factor+Higher Order Factors) 15.56 8 0.0492
Nonlinear Interaction : f(A,B) vs. AB 9.22 4 0.0559
age × sibsp (Factor+Higher Order Factors) 11.84 3 0.0080
Nonlinear 2.22 2 0.3302
Nonlinear Interaction : f(A,B) vs. AB 2.22 2 0.3302
age × parch (Factor+Higher Order Factors) 3.79 3 0.2848
Nonlinear 1.02 2 0.5994
Nonlinear Interaction : f(A,B) vs. AB 1.02 2 0.5994
sex × pclass × age (Factor+Higher Order Factors) 11.24 6 0.0813
Nonlinear 10.12 4 0.0385
TOTAL NONLINEAR 28.15 16 0.0303
TOTAL INTERACTION 77.40 23 <0.0001
TOTAL NONLINEAR + INTERACTION 80.04 25 <0.0001
TOTAL 243.00 31 <0.0001

Compute the slightly more time-consuming LR tests

Code
af1 <- anova(f1, test='LR')
print(af1, which='subscripts')
Likelihood Ratio Statistics for survived
χ2 d.f. P Tested
sex (Factor+Higher Order Factors) 339.48 12 <0.0001 1,9-13,26-31
All Interactions 76.17 11 <0.0001 9-13,26-31
pclass (Factor+Higher Order Factors) 154.71 16 <0.0001 2-3,9-10,14-19,26-31
All Interactions 64.95 14 <0.0001 9-10,14-19,26-31
age (Factor+Higher Order Factors) 109.11 24 <0.0001 4-6,11-31
All Interactions 53.85 21 0.0001 11-31
Nonlinear (Factor+Higher Order Factors) 37.75 16 0.0016 5-6,12-13,16-19,21-22,24-25,28-31
sibsp (Factor+Higher Order Factors) 26.75 4 <0.0001 7,20-22
All Interactions 12.10 3 0.0070 20-22
parch (Factor+Higher Order Factors) 3.96 4 0.4109 8,23-25
All Interactions 3.95 3 0.2666 23-25
sex × pclass (Factor+Higher Order Factors) 54.58 8 <0.0001 9-10,26-31
sex × age (Factor+Higher Order Factors) 19.68 9 0.0200 11-13,26-31
Nonlinear (Factor+Higher Order Factors) 16.43 6 0.0116 12-13,28-31
Nonlinear Interaction : f(A,B) vs. AB 7.76 2 0.0206 12-13
pclass × age (Factor+Higher Order Factors) 27.45 12 0.0066 14-19,26-31
Nonlinear (Factor+Higher Order Factors) 22.59 8 0.0039 16-19,28-31
Nonlinear Interaction : f(A,B) vs. AB 12.97 4 0.0114 16-19
age × sibsp (Factor+Higher Order Factors) 12.10 3 0.0070 20-22
Nonlinear 2.26 2 0.3224 21-22
Nonlinear Interaction : f(A,B) vs. AB 2.26 2 0.3224 21-22
age × parch (Factor+Higher Order Factors) 3.95 3 0.2666 23-25
Nonlinear 1.03 2 0.5990 24-25
Nonlinear Interaction : f(A,B) vs. AB 1.03 2 0.5990 24-25
sex × pclass × age (Factor+Higher Order Factors) 14.94 6 0.0207 26-31
Nonlinear 14.00 4 0.0073 28-31
TOTAL NONLINEAR 37.75 16 0.0016 5-6,12-13,16-19,21-22,24-25,28-31
TOTAL INTERACTION 107.47 23 <0.0001 9-31
TOTAL NONLINEAR + INTERACTION 117.47 25 <0.0001 5-6,9-31
TOTAL 561.97 31 <0.0001 1-31
  • In the RMS text, 5 knots were used for age and only Wald tests were performed
  • Large \(p\)-value for the 3rd order interaction was used to justify exclusion of these highest-order interactions from the model (and one other term)
  • More evidence for 3rd order interaction from the more accurate LR test
  • Keep this model

Show the many effects of predictors.

B
Code
p <- Predict(f1, age, sex, pclass, sibsp=0, parch=0, fun=plogis)
ggplot(p)
Figure 12.5: Effects of predictors on probability of survival of Titanic passengers, estimated for zero siblings/spouses and zero parents/children
Code
ggplot(Predict(f1, sibsp, age=c(10,15,20,50), conf.int=FALSE))
#
Figure 12.6: Effect of number of siblings and spouses on the log odds of surviving, for third class males

Note that children having many siblings apparently had lower survival. Married adults had slightly higher survival than unmarried ones.

C

But moderate problem with missing data must be dealt with

12.4 Examining Missing Data Patterns

Code
spar(mfrow=c(2,2), top=1, ps=11)
na.patterns <- naclus(titanic3)
require(rpart)      # Recursive partitioning package
who.na <- rpart(is.na(age) ~ sex + pclass + survived +
                sibsp + parch, data=titanic3, minbucket=15)
naplot(na.patterns, 'na per var')
plot(who.na, margin=.1); text(who.na)
plot(na.patterns)
Figure 12.7: Patterns of missing data. Upper left panel shows the fraction of observations missing on each predictor. Lower panel depicts a hierarchical cluster analysis of missingness combinations. The similarity measure shown on the \(Y\)-axis is the fraction of observations for which both variables are missing. Right panel shows the result of recursive partitioning for predicting is.na(age). The rpart function found only strong patterns according to passenger class.
Code
spar(ps=7, rt=3)
plot(summary(is.na(age) ~ sex + pclass + survived +
             sibsp + parch, data=t3))
Figure 12.8: Univariable descriptions of proportion of passengers with missing age

But models almost always provide better descriptive statistics

Code
m <- lrm(is.na(age) ~ sex * pclass + survived + sibsp + parch,
         data=t3)
m

Logistic Regression Model

lrm(formula = is.na(age) ~ sex * pclass + survived + sibsp + 
    parch, data = t3)
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 LR χ2 114.99 R2 0.133 C 0.703
FALSE 1046 d.f. 8 R28,1309 0.078 Dxy 0.406
TRUE 263 Pr(>χ2) <0.0001 R28,630.5 0.156 γ 0.451
max |∂log L/∂β| 5×10-6 Brier 0.148 τa 0.131
β S.E. Wald Z Pr(>|Z|)
Intercept  -2.2030  0.3641 -6.05 <0.0001
sex=male   0.6440  0.3953 1.63 0.1033
pclass=2nd  -1.0079  0.6658 -1.51 0.1300
pclass=3rd   1.6124  0.3596 4.48 <0.0001
survived  -0.1806  0.1828 -0.99 0.3232
sibsp   0.0435  0.0737 0.59 0.5548
parch  -0.3526  0.1253 -2.81 0.0049
sex=male × pclass=2nd   0.1347  0.7545 0.18 0.8583
sex=male × pclass=3rd  -0.8563  0.4214 -2.03 0.0422
Code
anova(m)
Wald Statistics for is.na(age)
χ2 d.f. P
sex (Factor+Higher Order Factors) 5.61 3 0.1324
All Interactions 5.58 2 0.0614
pclass (Factor+Higher Order Factors) 68.43 4 <0.0001
All Interactions 5.58 2 0.0614
survived 0.98 1 0.3232
sibsp 0.35 1 0.5548
parch 7.92 1 0.0049
sex × pclass (Factor+Higher Order Factors) 5.58 2 0.0614
TOTAL 82.90 8 <0.0001

pclass and parch are the important predictors of missing age.

12.5 Single Conditional Mean Imputation

Single imputation is not the preferred approach here. Click below to see this section.

First try: conditional mean imputation
Default spline transformation for age caused distribution of imputed values to be much different from non-imputed ones; constrain to linear. Also force discrete numeric variables to be linear because knots are hard to determine for them.

Code
xtrans <- transcan(~ I(age) + sex + pclass + I(sibsp) + I(parch),
                   imputed=TRUE, pl=FALSE, pr=FALSE, data=t3)
summary(xtrans)
transcan(x = ~I(age) + sex + pclass + I(sibsp) + I(parch), imputed = TRUE, 
    pr = FALSE, pl = FALSE, data = t3)

Iterations: 4 

R-squared achieved in predicting each variable:

   age    sex pclass  sibsp  parch 
 0.236  0.075  0.232  0.200  0.173 

Adjusted R-squared:

   age    sex pclass  sibsp  parch 
 0.233  0.072  0.229  0.197  0.170 

Coefficients of canonical variates for predicting each (row) variable

       age   sex   pclass sibsp parch
age           1.33  5.98  -3.16 -0.85
sex     0.04       -0.67  -0.04 -0.80
pclass  0.08 -0.32         0.14  0.02
sibsp  -0.02 -0.01  0.08         0.39
parch   0.00 -0.15  0.01   0.28      

Summary of imputed values

Starting estimates for imputed values:

   age    sex pclass  sibsp  parch 
    28      2      3      0      0 
Code
# Look at mean imputed values by sex,pclass and observed means
# age.i is age, filled in with conditional mean estimates
age.i <- with(t3, impute(xtrans, age, data=t3))
i <- is.imputed(age.i)
with(t3, tapply(age.i[i], list(sex[i],pclass[i]), mean))
            1st      2nd      3rd
female 37.64677 29.78567 21.67031
male   42.21854 32.55474 26.19231
Code
with(t3, tapply(age, list(sex,pclass), mean, na.rm=TRUE))
            1st      2nd      3rd
female 37.03759 27.49919 22.18531
male   41.02925 30.81540 25.96227
Code
dd   <- datadist(dd, age.i)
f.si <- lrm(survived ~ sex * pclass * rcs(age.i, 4) +
            rcs(age.i, 4) * (sibsp + parch), data=t3, x=TRUE, y=TRUE)
print(f.si, coefs=FALSE)

Logistic Regression Model

lrm(formula = survived ~ sex * pclass * rcs(age.i, 4) + rcs(age.i, 
    4) * (sibsp + parch), data = t3, x = TRUE, y = TRUE)
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 LR χ2 649.29 R2 0.532 C 0.864
0 809 d.f. 31 R231,1309 0.376 Dxy 0.728
1 500 Pr(>χ2) <0.0001 R231,927 0.487 γ 0.732
max |∂log L/∂β| 0.0006 Brier 0.132 τa 0.344
Code
spar(ps=12)
p1 <- Predict(f1,   age,   pclass, sex, sibsp=0, fun=plogis)
p2 <- Predict(f.si, age.i, pclass, sex, sibsp=0, fun=plogis)
p  <- rbind('Casewise Deletion'=p1, 'Single Imputation'=p2,
            rename=c(age.i='age'))   # creates .set. variable
ggplot(p, groups='sex', ylab='Probability of Surviving')
anova(f.si, test='LR')
Likelihood Ratio Statistics for survived
χ2 d.f. P
sex (Factor+Higher Order Factors) 399.94 12 <0.0001
All Interactions 74.26 11 <0.0001
pclass (Factor+Higher Order Factors) 163.16 16 <0.0001
All Interactions 61.31 14 <0.0001
age.i (Factor+Higher Order Factors) 109.88 24 <0.0001
All Interactions 55.34 21 <0.0001
Nonlinear (Factor+Higher Order Factors) 40.70 16 0.0006
sibsp (Factor+Higher Order Factors) 28.84 4 <0.0001
All Interactions 12.81 3 0.0051
parch (Factor+Higher Order Factors) 1.55 4 0.8177
All Interactions 0.26 3 0.9681
sex × pclass (Factor+Higher Order Factors) 50.28 8 <0.0001
sex × age.i (Factor+Higher Order Factors) 19.61 9 0.0205
Nonlinear (Factor+Higher Order Factors) 15.35 6 0.0177
Nonlinear Interaction : f(A,B) vs. AB 8.33 2 0.0156
pclass × age.i (Factor+Higher Order Factors) 23.86 12 0.0213
Nonlinear (Factor+Higher Order Factors) 19.67 8 0.0117
Nonlinear Interaction : f(A,B) vs. AB 11.63 4 0.0203
age.i × sibsp (Factor+Higher Order Factors) 12.81 3 0.0051
Nonlinear 1.50 2 0.4718
Nonlinear Interaction : f(A,B) vs. AB 1.50 2 0.4718
age.i × parch (Factor+Higher Order Factors) 0.26 3 0.9681
Nonlinear 0.02 2 0.9876
Nonlinear Interaction : f(A,B) vs. AB 0.02 2 0.9876
sex × pclass × age.i (Factor+Higher Order Factors) 11.88 6 0.0647
Nonlinear 10.57 4 0.0318
TOTAL NONLINEAR 40.70 16 0.0006
TOTAL INTERACTION 108.27 23 <0.0001
TOTAL NONLINEAR + INTERACTION 117.26 25 <0.0001
TOTAL 649.29 31 <0.0001
Figure 12.9: Predicted probability of survival for males from fit using casewise deletion (bottom) and single conditional mean imputation (top). is set to zero for these predicted values.
Figure 12.10: Predicted probability of survival for males from fit using casewise deletion (bottom) and single conditional mean imputation (top). is set to zero for these predicted values.
D

12.6 Multiple Imputation

The following uses aregImpute with predictive mean matching. By default, aregImpute does not transform age when it is being predicted from the other variables. Four knots are used to transform age when used to impute other variables (not needed here as no other missings were present). Since the fraction of observations with missing age is \(\frac{263}{1309} = 0.2\) we use 20 imputations.

Force sibsp and parch to be linear for imputation, because their highly discrete distributions make it difficult to choose knots for splines.
Code
set.seed(17)         # so can reproduce random aspects
mi <- aregImpute(~ age + sex + pclass +
                 I(sibsp) + I(parch) + survived,
                 data=t3, n.impute=20, nk=4, pr=FALSE)
mi

Multiple Imputation using Bootstrap and PMM

aregImpute(formula = ~age + sex + pclass + I(sibsp) + I(parch) + 
    survived, data = t3, n.impute = 20, nk = 4, pr = FALSE)

n: 1309     p: 6    Imputations: 20     nk: 4 

Number of NAs:
     age      sex   pclass    sibsp    parch survived 
     263        0        0        0        0        0 

         type d.f.
age         s    1
sex         c    1
pclass      c    2
sibsp       l    1
parch       l    1
survived    l    1

Transformation of Target Variables Forced to be Linear

R-squares for Predicting Non-Missing Values for Each Variable
Using Last Imputations of Predictors
  age 
0.294 
Code
# Print the first 10 imputations for the first 10 passengers
#  having missing age
mi$imputed$age[1:10, 1:10]
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
16    29 71.0   62   41   24   71 48.0   30   28    33
38    42 58.0   58   64   62   28 51.0   36   29    29
41    42 32.5   55   24   58   60 54.0   47   23    54
47    31 28.5   48   37   60   50 28.5   38   42    47
60    28 42.0   38   31   58   21 45.0    2   61    42
70    38 58.0   30   17   43   39 64.0   52   33    30
71    37 46.0   30   47   30   36 47.0   65   30    40
75    62 46.0   47   70   65   54 21.0   47   46    56
81    24 25.0   17   28   36   29 42.0   56   48    41
107   42 23.0   60   41   46   58 21.0   61   33    62

Show the distribution of imputed (black) and actual ages (gray).

E
Code
plot(mi)
Ecdf(t3$age, add=TRUE, col='gray', lwd=2,
     subtitles=FALSE)
Figure 12.11: Distributions of imputed and actual ages for the Titanic dataset. Imputed values are in black and actual ages in gray.
  • Fit logistic models for 20 completed datasets and print the ratio of imputation-corrected variances to average ordinary variances.
  • Use method of Chan & Meng to get LR tests
  • This method takes final \(\hat{\beta}\) from a single model fit on 20 stacked completed datasets
  • But standard errors come from the usual Rubin’s rule and the 20 fits
  • rms::processMI computes the LR statistics from special information saved by fit.mult.impute triggered by lrt=TRUE
  • The Hmisc package runifChanged function is used to save the result and not spend 1m running it again until an input changes
  • The rms LRupdate function is run to fix likelihood ratio-related statistics (LR test, its \(p\)-value, various \(R^2\) measures) using the overall Chan & Meng model LR \(\chi^2\) computed by processMI
  • Two of the \(R^2\) printed use an effective sample size of 927 for the unbalanced binary survived variable
F
Code
runmi <- function()
  fit.mult.impute(survived ~ sex * pclass * rcs(age, 4) + rcs(age, 4) * (sibsp + parch),
                  lrm, mi, data=t3, pr=FALSE, lrt=TRUE)  # lrt implies x=TRUE y=TRUE + more
seed <- 17
f.mi <- runifChanged(runmi, seed, mi, t3)
afmi <- processMI(f.mi, 'anova')
# Print imputation penalty indexes
prmiInfo(afmi)
Imputation penalties
Test Missing
Information
Fraction
Denominator
d.f.
χ2 Discount
sex (Factor+Higher Order Factors) 0.131 13387.9 0.869
All Interactions 0.180 6455.1 0.820
pclass (Factor+Higher Order Factors) 0.106 27217.2 0.894
All Interactions 0.154 11285.5 0.846
age (Factor+Higher Order Factors) 0.179 14281.1 0.821
All Interactions 0.175 12960.7 0.825
Nonlinear (Factor+Higher Order Factors) 0.160 11937.3 0.840
sibsp (Factor+Higher Order Factors) 0.209 1744.4 0.791
All Interactions 0.215 1235.9 0.785
parch (Factor+Higher Order Factors) 0.179 2362.9 0.821
All Interactions 0.219 1183.5 0.781
sex × pclass (Factor+Higher Order Factors) 0.153 6502.3 0.847
sex × age (Factor+Higher Order Factors) 0.210 3875.9 0.790
Nonlinear (Factor+Higher Order Factors) 0.223 2293.9 0.777
Nonlinear Interaction : f(A,B) vs. AB 0.000 Inf 1.000
pclass × age (Factor+Higher Order Factors) 0.169 7940.7 0.831
Nonlinear (Factor+Higher Order Factors) 0.186 4413.0 0.814
Nonlinear Interaction : f(A,B) vs. AB 0.181 2330.0 0.819
age × sibsp (Factor+Higher Order Factors) 0.215 1235.9 0.785
Nonlinear 0.147 1765.7 0.853
Nonlinear Interaction : f(A,B) vs. AB 0.147 1765.7 0.853
age × parch (Factor+Higher Order Factors) 0.219 1183.5 0.781
Nonlinear 0.213 837.2 0.787
Nonlinear Interaction : f(A,B) vs. AB 0.213 837.2 0.787
sex × pclass × age (Factor+Higher Order Factors) 0.215 2476.2 0.785
Nonlinear 0.260 1123.0 0.740
TOTAL NONLINEAR 0.160 11937.3 0.840
TOTAL INTERACTION 0.167 15608.7 0.833
TOTAL NONLINEAR + INTERACTION 0.165 17345.0 0.835
TOTAL 0.144 28342.6 0.856
  • None of the denominator d.f. is small enough for us to worry about the \(\chi^2\) approximation
  • Take the ratio of selected LR statistics after multiple imputation to that from casewise deletion
Code
afmi
Likelihood Ratio Statistics for survived
χ2 d.f. P
sex (Factor+Higher Order Factors) 345.17 12 <0.0001
All Interactions 59.41 11 <0.0001
pclass (Factor+Higher Order Factors) 161.47 16 <0.0001
All Interactions 50.55 14 <0.0001
age (Factor+Higher Order Factors) 101.66 24 <0.0001
All Interactions 43.61 21 0.0026
Nonlinear (Factor+Higher Order Factors) 39.97 16 0.0008
sibsp (Factor+Higher Order Factors) 24.23 4 <0.0001
All Interactions 8.94 3 0.0300
parch (Factor+Higher Order Factors) 3.19 4 0.5272
All Interactions 1.72 3 0.6329
sex × pclass (Factor+Higher Order Factors) 42.26 8 <0.0001
sex × age (Factor+Higher Order Factors) 14.42 9 0.1081
Nonlinear (Factor+Higher Order Factors) 11.47 6 0.0748
Nonlinear Interaction : f(A,B) vs. AB 7.94 2 0.0189
pclass × age (Factor+Higher Order Factors) 19.68 12 0.0734
Nonlinear (Factor+Higher Order Factors) 14.76 8 0.0639
Nonlinear Interaction : f(A,B) vs. AB 8.93 4 0.0629
age × sibsp (Factor+Higher Order Factors) 8.94 3 0.0300
Nonlinear 1.26 2 0.5313
Nonlinear Interaction : f(A,B) vs. AB 1.26 2 0.5313
age × parch (Factor+Higher Order Factors) 1.72 3 0.6329
Nonlinear 1.73 2 0.4214
Nonlinear Interaction : f(A,B) vs. AB 1.73 2 0.4214
sex × pclass × age (Factor+Higher Order Factors) 9.11 6 0.1676
Nonlinear 7.66 4 0.1050
TOTAL NONLINEAR 39.97 16 0.0008
TOTAL INTERACTION 87.90 23 <0.0001
TOTAL NONLINEAR + INTERACTION 100.00 25 <0.0001
TOTAL 567.58 31 <0.0001
Code
f.mi <- LRupdate(f.mi, afmi)
print(f.mi, r2=1:4)   # print all 4 imputation-adjusted R^2

Logistic Regression Model

fit.mult.impute(formula = survived ~ sex * pclass * rcs(age, 
    4) + rcs(age, 4) * (sibsp + parch), fitter = lrm, xtrans = mi, 
    data = t3, lrt = TRUE, pr = FALSE)
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 LR χ2 567.58 R21309 0.352 C 0.868
0 809 d.f. 31 R231,1309 0.336 Dxy 0.731
1 500 Pr(>χ2) <0.0001 R2927 0.458 γ 0.737
max |∂log L/∂β| 0.003 R231,927 0.439 τa 0.347
Brier 0.130
β S.E. Wald Z Pr(>|Z|)
Intercept   -0.3199  3.2655 -0.10 0.9220
sex=male   5.8145  4.1248 1.41 0.1586
pclass=2nd   11.5383  8.2722 1.39 0.1631
pclass=3rd   2.3785  3.1614 0.75 0.4518
age   0.2701  0.2149 1.26 0.2087
age'   -0.6430  0.5367 -1.20 0.2309
age''   2.0278  2.2600 0.90 0.3696
sibsp   -0.7625  0.3165 -2.41 0.0160
parch   -0.4562  0.5576 -0.82 0.4133
sex=male × pclass=2nd  -11.5679  8.8620 -1.31 0.1918
sex=male × pclass=3rd   -6.0402  4.1905 -1.44 0.1495
sex=male × age   -0.5758  0.2578 -2.23 0.0255
sex=male × age'   1.2105  0.6099 1.98 0.0472
sex=male × age''   -3.8105  2.5114 -1.52 0.1292
pclass=2nd × age   -0.8021  0.4775 -1.68 0.0930
pclass=3rd × age   -0.3556  0.2096 -1.70 0.0898
pclass=2nd × age'   1.9084  1.0268 1.86 0.0631
pclass=3rd × age'   0.6770  0.5353 1.26 0.2059
pclass=2nd × age''   -6.6070  4.0714 -1.62 0.1046
pclass=3rd × age''   -1.8293  2.3224 -0.79 0.4309
age × sibsp   0.0070  0.0275 0.26 0.7981
age' × sibsp   0.0987  0.0986 1.00 0.3169
age'' × sibsp   -0.4979  0.5199 -0.96 0.3382
age × parch   0.0362  0.0396 0.91 0.3607
age' × parch   -0.1208  0.1115 -1.08 0.2783
age'' × parch   0.4435  0.5094 0.87 0.3839
sex=male × pclass=2nd × age   0.6870  0.5140 1.34 0.1813
sex=male × pclass=3rd × age   0.4564  0.2625 1.74 0.0821
sex=male × pclass=2nd × age'   -1.6435  1.1151 -1.47 0.1405
sex=male × pclass=3rd × age'   -0.7801  0.6367 -1.23 0.2205
sex=male × pclass=2nd × age''   5.7658  4.4553 1.29 0.1956
sex=male × pclass=3rd × age''   1.7728  2.7888 0.64 0.5250
Code
round(afmi[c(1,3,5,30), 'Chi-Square'] / af1[c(1,3,5,30), 'Chi-Square'], 3)
   sex  (Factor+Higher Order Factors) pclass  (Factor+Higher Order Factors) 
                                1.017                                 1.044 
   age  (Factor+Higher Order Factors)                                 TOTAL 
                                0.932                                 1.010 

G
  • Using all available data resulted in increases in predictive information for sex, pclass and strangely a reduction for age

For each completed dataset run bootstrap validation of model performance indexes and the nonparametric calibration curve. Because the 20 analyses of completed datasets help to average out some of the noise in bootstrap estimates we can use fewer bootstrap repetitions (100) than usual (300 or so).

Code
val <- function(fit)
  list(validate  = validate (fit, B=100),
       calibrate = calibrate(fit, B=100) )

runmi <- function()
  fit.mult.impute(       # 1m
    survived ~ sex * pclass * rcs(age,4) +
    rcs(age,4) * (sibsp + parch),
    lrm, mi, data=t3, pr=FALSE,
    fun=val, fitargs=list(x=TRUE, y=TRUE))
seed <- 19
f <- runifChanged(runmi, seed, mi, t3, val)

  • Display the 20 bootstrap internal validations averaged over the multiple imputations.
  • Show the 20 individual calibration curves then the first 3 in more detail followed by the overall calibration estimate
Code
val <- processMI(f, 'validate')
print(val, digits=3)
Index Original
Sample
Training
Sample
Test
Sample
Optimism Corrected
Index
Successful
Resamples
Dxy 0.735 0.749 0.724 0.025 0.71 1545
R2 0.543 0.561 0.495 0.066 0.477 1545
Intercept 0 0 -0.109 0.109 -0.109 1545
Slope 1 1 0.832 0.168 0.832 1545
Emax 0 0 0.06 0.06 0.06 1545
D 0.509 0.532 0.453 0.078 0.431 1545
U -0.002 -0.002 0.005 -0.006 0.005 1545
Q 0.511 0.533 0.449 0.085 0.426 1545
B 0.129 0.126 0.133 -0.007 0.136 1545
g 2.392 3.587 2.714 0.873 1.519 1545
gp 0.352 0.358 0.331 0.026 0.326 1545
Code
spar(mfrow=c(2,2), top=1, bot=2)
cal <- processMI(f, 'calibrate', nind=3)

n=1309   Mean absolute error=0.009   Mean squared error=0.00013
0.9 Quantile of absolute error=0.018

n=1309   Mean absolute error=0.008   Mean squared error=1e-04
0.9 Quantile of absolute error=0.016

n=1309   Mean absolute error=0.009   Mean squared error=0.00018
0.9 Quantile of absolute error=0.022

n=1309   Mean absolute error=0.009   Mean squared error=0.00017
0.9 Quantile of absolute error=0.022
Code
# plot(cal) for full-size final calibration curve
Figure 12.12: Estimated calibration curves for the Titanic risk model, accounting for multiple imputation
Figure 12.13: Estimated calibration curves for the Titanic risk model, accounting for multiple imputation

Return to the stacked fit and compare it to the fit from single imputation

Code
p1 <- Predict(f.si,  age.i, pclass, sex, sibsp=0, fun=plogis)
p2 <- Predict(f.mi,  age,   pclass, sex, sibsp=0, fun=plogis)
p  <- rbind('Single Imputation'=p1, 'Multiple Imputation'=p2,
            rename=c(age.i='age'))
ggplot(p, groups='sex', ylab='Probability of Surviving')
Figure 12.14: Predicted probability of survival for males from fit using single conditional mean imputation again (top) and multiple random draw imputation (bottom). Both sets of predictions are for sibsp=0.

12.7 Summarizing the Fitted Model

Show odds ratios for changes in predictor values

H
Code
spar(bot=1, top=0.5, ps=8)
# Get predicted values for certain types of passengers
s <- summary(f.mi, age=c(1,30), sibsp=0:1)
# override default ranges for 3 variables
plot(s, log=TRUE, main='')
Figure 12.15: Odds ratios for some predictor settings
Code
phat <- predict(f.mi,
                combos <-
         expand.grid(age=c(2,21,50),sex=levels(t3$sex),
                     pclass=levels(t3$pclass),
                     sibsp=0, parch=0), type='fitted')
# Can also use Predict(f.mi, age=c(2,21,50), sex, pclass,
#                      sibsp=0, fun=plogis)$yhat
options(digits=1)
data.frame(combos, phat)
   age    sex pclass sibsp parch phat
1    2 female    1st     0     0 0.55
2   21 female    1st     0     0 0.99
3   50 female    1st     0     0 0.96
4    2   male    1st     0     0 0.99
5   21   male    1st     0     0 0.49
6   50   male    1st     0     0 0.28
7    2 female    2nd     0     0 1.00
8   21 female    2nd     0     0 0.88
9   50 female    2nd     0     0 0.80
10   2   male    2nd     0     0 0.99
11  21   male    2nd     0     0 0.11
12  50   male    2nd     0     0 0.07
13   2 female    3rd     0     0 0.87
14  21 female    3rd     0     0 0.58
15  50 female    3rd     0     0 0.45
16   2   male    3rd     0     0 0.81
17  21   male    3rd     0     0 0.15
18  50   male    3rd     0     0 0.05
Code
options(digits=5)

We can also get predicted values by creating an R function that will evaluate the model on demand, but that only works if there are no 3rd-order interactions.

I
Code
pred.logit <- Function(f.mi)
# Note: if don't define sibsp to pred.logit, defaults to 0
plogis(pred.logit(age=c(2,21,50), sex='male', pclass='3rd'))

A nomogram could be used to obtain predicted values manually, but this is not feasible when so many interaction terms are present.

J

12.8 Bayesian Analysis

  • Repeat the multiple imputation-based approach but using a Bayesian binary logistic model
  • Using default blrm function normal priors on regression coefficients with zero mean and large SD making the priors almost flat
  • blrm uses the rcmdstan and rstan packages that provides the full power of Stan to R
  • Here we use cmdstan with rcmdstan
  • rmsb has its own caching mechanism that efficiently stores the model fit object (and all its posterior draws) and reads it back from disk install of running it again, until one of the inputs change
  • See this for more about the rmsb package
  • Could use smaller prior SDs to get penalized estimates
  • Using 4 independent Markov chain Hamiltonion posterior sampling procedures each with 1000 burn-in iterations that are discarded, and 1000 “real” iterations for a total of 4000 posterior sample draws
  • Use the first 10 multiple imputations already developed above (object mi), running the Bayesian procedure separately for 10 completed datasets
  • Merely have to stack the posterior draws into one giant sample to account for imputation and get correct posterior distribution
K
Code
# Use all available CPU cores less 1.  Each chain will be run on its
# own core.
require(rmsb)
options(mc.cores=parallel::detectCores() - 1, rmsb.backend='cmdstan')
cmdstanr::set_cmdstan_path(cmdstan.loc)
# cmdstan.loc is defined in ~/.Rprofile

# 10 Bayesian analyses took 3m on 11 cores
set.seed(21)
bt <- stackMI(survived ~ sex * pclass * rcs(age, 4) +
          rcs(age, 4) * (sibsp + parch),
          blrm, mi, data=t3, n.impute=10, refresh=25,
          file='bt.rds')
bt

Bayesian Logistic Model

Dirichlet Priors With Concentration Parameter 0.541 for Intercepts

stackMI(formula = survived ~ sex * pclass * rcs(age, 4) + rcs(age, 
    4) * (sibsp + parch), fitter = blrm, xtrans = mi, data = t3, 
    n.impute = 10, refresh = 25, file = "bt.rds")
Mixed Calibration/
Discrimination Indexes
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 B 0.132 [0.129, 0.135] g 2.79 [2.331, 3.311] C 0.867 [0.861, 0.871]
0 809 gp 0.36 [0.344, 0.377] Dxy 0.734 [0.722, 0.743]
1 500 EV 0.468 [0.423, 0.509]
Draws 40000 v 8.395 [3.785, 14.378]
Chains 4 vp 0.111 [0.1, 0.119]
Time 12.8s
Imputations 10
p 31
Mean β Median β S.E. Lower Upper Pr(β>0) Symmetry
Intercept   -3.0574   -2.0287   5.1889  -13.9832   5.4444  0.3070  0.60
sex=male   9.8987   9.0703   5.8648   -0.0449  22.1443  0.9850  1.50
pclass=2nd   21.7845   20.3308  10.5143   4.2356  42.8858  0.9994  1.51
pclass=3rd   5.4861   4.4469   5.0962   -2.7498  16.2943  0.9070  1.68
age   0.4854   0.4252   0.3429   -0.0821   1.1991  0.9677  1.62
age'   -1.1140   -1.0010   0.8096   -2.7600   0.3192  0.0498  0.68
age''   4.2424   3.8537   3.2600   -1.7224  10.7917  0.9294  1.39
sibsp   -0.9451   -0.9292   0.3210   -1.5925  -0.3322  0.0003  0.87
parch   -0.5118   -0.5851   0.7005   -1.7904   1.1614  0.1644  1.56
sex=male × pclass=2nd  -22.0181  -20.6297  11.1726  -44.8192  -2.5869  0.0043  0.71
sex=male × pclass=3rd   -9.8901   -9.0716   5.9260  -22.1443   0.2773  0.0173  0.67
sex=male × age   -0.8732   -0.8220   0.3752   -1.6323  -0.2091  0.0007  0.67
sex=male × age'   1.8250   1.7263   0.8636   0.3175   3.6201  0.9962  1.40
sex=male × age''   -6.8685   -6.5295   3.4458  -13.9690  -0.7234  0.0085  0.74
pclass=2nd × age   -1.4303   -1.3527   0.6078   -2.6483  -0.3837  0.0000  0.68
pclass=3rd × age   -0.5926   -0.5320   0.3382   -1.3031  -0.0364  0.0075  0.61
pclass=2nd × age'   3.1210   2.9819   1.2852   0.7919   5.6773  0.9996  1.37
pclass=3rd × age'   1.1940   1.0794   0.8045   -0.2022   2.8484  0.9648  1.48
pclass=2nd × age''  -12.3066  -11.8417   5.0017  -22.2329  -3.0155  0.0008  0.77
pclass=3rd × age''   -4.1712   -3.7937   3.2828  -10.8907   1.7529  0.0762  0.72
age × sibsp   0.0170   0.0166   0.0273   -0.0358   0.0717  0.7338  1.06
age' × sibsp   0.0695   0.0688   0.0969   -0.1247   0.2575  0.7655  1.01
age'' × sibsp   -0.4735   -0.4696   0.5169   -1.4666   0.5670  0.1780  0.98
age × parch   0.0414   0.0467   0.0477   -0.0694   0.1258  0.8436  0.66
age' × parch   -0.1311   -0.1397   0.1263   -0.3734   0.1336  0.1419  1.27
age'' × parch   0.5616   0.5880   0.5607   -0.5790   1.6423  0.8456  0.87
sex=male × pclass=2nd × age   1.3213   1.2497   0.6481   0.1610   2.6247  0.9956  1.36
sex=male × pclass=3rd × age   0.7345   0.6839   0.3790   0.0673   1.5120  0.9941  1.47
sex=male × pclass=2nd × age'   -2.8776   -2.7541   1.3800   -5.6824  -0.3858  0.0058  0.77
sex=male × pclass=3rd × age'   -1.3626   -1.2666   0.8792   -3.1591   0.2335  0.0348  0.72
sex=male × pclass=2nd × age''   11.3418   10.9152   5.4082   1.4634  22.3502  0.9922  1.24
sex=male × pclass=3rd × age''   4.0697   3.7726   3.6072   -2.7005  11.3727  0.8849  1.28
  • Note that fit indexes have HPD uncertainty intervals
  • Everthing above accounts for imputation
  • Look at diagnostics
L
Code
stanDx(bt)
Diagnostics for each of 10 imputations

Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)


Imputation 1 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.941 1.016 0.973 0.986 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.005     1166     1661
2    beta[1] 1.005      954     1311
3    beta[2] 1.006      795     1020
4    beta[3] 1.000     1717     1725
5    beta[4] 1.007      970     1434
6    beta[5] 1.007     1011     1277
7    beta[6] 1.004     1362     2180
8    beta[7] 1.003     2352     3066
9    beta[8] 1.002     3141     3134
10   beta[9] 1.008      700      872
11  beta[10] 1.001     1612     1563
12  beta[11] 1.006     1005     1410
13  beta[12] 1.006      884     1263
14  beta[13] 1.002     1449     2147
15  beta[14] 1.012      757     1041
16  beta[15] 1.003     1748     2301
17  beta[16] 1.005      738     1144
18  beta[17] 1.004     1788     2480
19  beta[18] 1.007      977     1465
20  beta[19] 1.001     2091     2028
21  beta[20] 1.002     4067     2869
22  beta[21] 1.002     4213     2912
23  beta[22] 1.000     3895     3304
24  beta[23] 1.000     3569     2397
25  beta[24] 1.000     4358     3198
26  beta[25] 1.001     4308     2800
27  beta[26] 1.008      664      938
28  beta[27] 1.003     1033     1841
29  beta[28] 1.010      697      916
30  beta[29] 1.004     1775     2710
31  beta[30] 1.006      792     1340
32  beta[31] 1.001     2060     1777

Imputation 2 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.949 0.987 0.995 1.029 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.007      850     1204
2    beta[1] 1.008      772     1061
3    beta[2] 1.006      633      680
4    beta[3] 1.003     1778     1849
5    beta[4] 1.006      729      973
6    beta[5] 1.006      666      854
7    beta[6] 1.003      812      972
8    beta[7] 1.003     1434     2121
9    beta[8] 1.003     2278     2042
10   beta[9] 1.008      563      579
11  beta[10] 1.002     1776     1878
12  beta[11] 1.008      636      808
13  beta[12] 1.005      668      742
14  beta[13] 1.005      899      948
15  beta[14] 1.008      572      624
16  beta[15] 1.003     1445     2137
17  beta[16] 1.009      547      599
18  beta[17] 1.002     2648     2704
19  beta[18] 1.006      734     1014
20  beta[19] 1.001     2163     2067
21  beta[20] 1.001     5178     3074
22  beta[21] 1.002     4518     2906
23  beta[22] 1.001     3841     3111
24  beta[23] 1.003     2902     2513
25  beta[24] 1.000     4886     3128
26  beta[25] 1.002     3830     2963
27  beta[26] 1.008      520      577
28  beta[27] 1.004      925     1561
29  beta[28] 1.008      511      561
30  beta[29] 1.001     1798     2039
31  beta[30] 1.008      638      741
32  beta[31] 1.000     2302     2191

Imputation 3 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.005 0.956 0.993 0.979 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001      935     1486
2    beta[1] 1.001      980     1240
3    beta[2] 1.002      764      834
4    beta[3] 1.002     2005     1952
5    beta[4] 1.001     1073     1388
6    beta[5] 1.002      725     1014
7    beta[6] 1.000     1307     1951
8    beta[7] 1.002     2266     2372
9    beta[8] 1.000     1785     2943
10   beta[9] 1.001      672      703
11  beta[10] 1.001     1690     2344
12  beta[11] 1.001      787     1111
13  beta[12] 1.001     1020     1141
14  beta[13] 1.001     1420     1819
15  beta[14] 1.001      725      868
16  beta[15] 1.003     1070     1456
17  beta[16] 1.001      791      846
18  beta[17] 1.001     1601     2074
19  beta[18] 1.001      794     1008
20  beta[19] 1.001     1578     2045
21  beta[20] 1.000     2832     3294
22  beta[21] 1.001     2833     2654
23  beta[22] 1.002     3278     2728
24  beta[23] 1.002     1886     1932
25  beta[24] 1.000     2329     2562
26  beta[25] 1.001     2808     2479
27  beta[26] 1.001      719      758
28  beta[27] 1.001     1238     1622
29  beta[28] 1.001      684      693
30  beta[29] 1.001     1389     2142
31  beta[30] 1.001      761      962
32  beta[31] 1.000     2013     2115

Imputation 4 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.045 1.05 0.928 0.997 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.003     1225     1220
2    beta[1] 1.004     1035     1552
3    beta[2] 1.004      861      833
4    beta[3] 1.002     1811     2166
5    beta[4] 1.005      870     1154
6    beta[5] 1.003      921      815
7    beta[6] 1.003     1225     1230
8    beta[7] 1.001     2474     2599
9    beta[8] 1.001     2076     2072
10   beta[9] 1.004      809      694
11  beta[10] 1.001     1996     2175
12  beta[11] 1.005      893      917
13  beta[12] 1.003      873      902
14  beta[13] 1.003     1221     1250
15  beta[14] 1.002      802      695
16  beta[15] 1.003     1526     1950
17  beta[16] 1.005      775      733
18  beta[17] 1.004     1981     2105
19  beta[18] 1.003      947      938
20  beta[19] 1.003     2039     2432
21  beta[20] 1.001     3456     2895
22  beta[21] 1.001     3062     3081
23  beta[22] 1.001     3516     2914
24  beta[23] 1.000     2449     2882
25  beta[24] 1.000     3141     2772
26  beta[25] 1.000     3152     2898
27  beta[26] 1.003      748      762
28  beta[27] 1.003     1251     1753
29  beta[28] 1.003      759      669
30  beta[29] 1.001     1834     2553
31  beta[30] 1.004      925      851
32  beta[31] 1.001     2494     2307

Imputation 5 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.004 1.035 0.911 0.956 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.005      938     1622
2    beta[1] 1.011      716     1081
3    beta[2] 1.005      653      796
4    beta[3] 1.001     2058     1971
5    beta[4] 1.009      646      901
6    beta[5] 1.003      944      887
7    beta[6] 1.003      887     1511
8    beta[7] 1.000     1950     2115
9    beta[8] 1.003     4027     2561
10   beta[9] 1.006      583      690
11  beta[10] 1.003     1639     2124
12  beta[11] 1.006      838      973
13  beta[12] 1.004      764      898
14  beta[13] 1.001     1056     1159
15  beta[14] 1.003      739      780
16  beta[15] 1.002     1558     2149
17  beta[16] 1.008      525      818
18  beta[17] 1.002     1899     2076
19  beta[18] 1.004      896      964
20  beta[19] 1.000     2202     1932
21  beta[20] 1.001     3642     2996
22  beta[21] 1.000     3551     2644
23  beta[22] 1.002     3364     2926
24  beta[23] 1.000     2781     2448
25  beta[24] 1.001     3713     2865
26  beta[25] 1.003     4412     2675
27  beta[26] 1.008      518      664
28  beta[27] 1.007     1016     1127
29  beta[28] 1.007      521      679
30  beta[29] 1.001     1759     2441
31  beta[30] 1.007      597      822
32  beta[31] 1.002     1957     2238

Imputation 6 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.993 0.956 1.027 1.016 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.005      799     1641
2    beta[1] 1.005      758     1346
3    beta[2] 1.010      586      625
4    beta[3] 1.003     1841     1936
5    beta[4] 1.009      708     1061
6    beta[5] 1.010      673      646
7    beta[6] 1.010      802     1704
8    beta[7] 1.004     1610     1871
9    beta[8] 1.001     3277     2714
10   beta[9] 1.013      568      632
11  beta[10] 1.002     1645     1896
12  beta[11] 1.004      713      848
13  beta[12] 1.010      724      873
14  beta[13] 1.004     1077     1722
15  beta[14] 1.012      549      699
16  beta[15] 1.003     1187     1527
17  beta[16] 1.011      583      692
18  beta[17] 1.002     2393     2658
19  beta[18] 1.008      669      879
20  beta[19] 1.002     2087     2113
21  beta[20] 1.000     3115     2794
22  beta[21] 1.002     3379     2851
23  beta[22] 1.001     3320     2804
24  beta[23] 1.001     3617     2899
25  beta[24] 1.000     4366     2760
26  beta[25] 1.001     4169     2957
27  beta[26] 1.011      556      578
28  beta[27] 1.004      968     1474
29  beta[28] 1.011      515      675
30  beta[29] 1.004     1785     2129
31  beta[30] 1.006      677      848
32  beta[31] 1.002     2341     2308

Imputation 7 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.999 0.989 0.976 0.951 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001     1492     1908
2    beta[1] 1.001     1040     1602
3    beta[2] 1.002      976     1269
4    beta[3] 1.001     1943     2131
5    beta[4] 1.001     1131     1563
6    beta[5] 1.002     1162     1401
7    beta[6] 1.002     1526     2003
8    beta[7] 1.001     1950     2112
9    beta[8] 1.000     3384     2652
10   beta[9] 1.001      892     1169
11  beta[10] 1.001     1934     2164
12  beta[11] 1.001     1114     1574
13  beta[12] 1.001     1040     1632
14  beta[13] 1.001     1637     2197
15  beta[14] 1.003      917     1184
16  beta[15] 1.001     1689     2093
17  beta[16] 1.003      864      934
18  beta[17] 1.002     1665     1862
19  beta[18] 1.003     1111     1826
20  beta[19] 1.001     2097     1872
21  beta[20] 1.001     4065     2913
22  beta[21] 1.000     4918     2789
23  beta[22] 1.002     4512     3225
24  beta[23] 1.003     3923     3026
25  beta[24] 1.003     4179     2706
26  beta[25] 1.000     3935     2666
27  beta[26] 1.004      793      938
28  beta[27] 1.000     1328     2023
29  beta[28] 1.002      845     1102
30  beta[29] 1.001     1983     2327
31  beta[30] 1.001     1004     1411
32  beta[31] 1.000     2055     1872

Imputation 8 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.898 1.013 1.082 0.968 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.004     1128     1433
2    beta[1] 1.005      907     1117
3    beta[2] 1.009      698      841
4    beta[3] 1.002     2100     2229
5    beta[4] 1.005      896     1163
6    beta[5] 1.005      814     1033
7    beta[6] 1.003     1163     1596
8    beta[7] 1.003     2073     2780
9    beta[8] 1.001     3447     2607
10   beta[9] 1.006      626      676
11  beta[10] 1.002     1993     2156
12  beta[11] 1.007      745     1029
13  beta[12] 1.005      834      870
14  beta[13] 1.002     1201     1548
15  beta[14] 1.006      684      847
16  beta[15] 1.002     1667     2344
17  beta[16] 1.008      656      729
18  beta[17] 1.001     2744     2378
19  beta[18] 1.005      798     1028
20  beta[19] 1.001     2096     2036
21  beta[20] 1.001     5224     3136
22  beta[21] 1.002     4537     2694
23  beta[22] 1.002     4288     3159
24  beta[23] 1.000     3822     2860
25  beta[24] 1.002     5479     2532
26  beta[25] 1.000     4939     3007
27  beta[26] 1.007      625      566
28  beta[27] 1.009      920     1381
29  beta[28] 1.006      615      610
30  beta[29] 1.001     1580     2129
31  beta[30] 1.005      697      690
32  beta[31] 1.001     2395     2792

Imputation 9 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.018 1.038 1.02 0.894 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.004     1097     1575
2    beta[1] 1.003     1084     1179
3    beta[2] 1.003      821      903
4    beta[3] 1.002     1790     2013
5    beta[4] 1.003     1067     1311
6    beta[5] 1.003      991     1102
7    beta[6] 1.002     1278     1587
8    beta[7] 1.000     1805     2490
9    beta[8] 1.001     2827     2714
10   beta[9] 1.004      731      855
11  beta[10] 1.003     1676     1933
12  beta[11] 1.004      888     1174
13  beta[12] 1.002      934     1027
14  beta[13] 1.002     1556     2325
15  beta[14] 1.005      777      980
16  beta[15] 1.001     1303     2179
17  beta[16] 1.004      784      951
18  beta[17] 1.001     1807     1930
19  beta[18] 1.005      900     1205
20  beta[19] 1.001     2054     2421
21  beta[20] 1.000     4139     2741
22  beta[21] 1.000     4680     3325
23  beta[22] 1.000     4685     2516
24  beta[23] 1.002     2301     3064
25  beta[24] 1.001     3634     2968
26  beta[25] 1.005     4815     2891
27  beta[26] 1.004      738      906
28  beta[27] 1.001     1159     1550
29  beta[28] 1.005      729      893
30  beta[29] 1.000     1761     2167
31  beta[30] 1.004      873      993
32  beta[31] 1.001     2529     2096

Imputation 10 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.972 0.975 1.049 1.038 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.003     1025     1258
2    beta[1] 1.003      869      933
3    beta[2] 1.003      759      613
4    beta[3] 1.003     1681     1827
5    beta[4] 1.003      859      755
6    beta[5] 1.002      887      884
7    beta[6] 1.001     1286     1765
8    beta[7] 1.001     2315     2521
9    beta[8] 1.001     3546     3036
10   beta[9] 1.002      680      559
11  beta[10] 1.001     1690     1944
12  beta[11] 1.004      732      813
13  beta[12] 1.002      763      796
14  beta[13] 1.002     1185     1712
15  beta[14] 1.006      733      641
16  beta[15] 1.002     1522     1675
17  beta[16] 1.004      695      593
18  beta[17] 1.002     2451     2170
19  beta[18] 1.002      899      880
20  beta[19] 1.002     1912     1722
21  beta[20] 1.001     5185     2851
22  beta[21] 1.000     5688     3010
23  beta[22] 1.001     4246     3043
24  beta[23] 1.000     3911     2726
25  beta[24] 1.000     4750     2930
26  beta[25] 1.001     4156     3296
27  beta[26] 1.007      641      578
28  beta[27] 1.003     1128     1062
29  beta[28] 1.007      596      445
30  beta[29] 1.002     1829     2563
31  beta[30] 1.003      703      749
32  beta[31] 1.001     2104     2163
Code
# Look at convergence of only 2 parameters
stanDxplot(bt, c('sex=male', 'pclass=3rd', 'age'), rev=TRUE)

  • Difficult to see but there are 40 traces (10 imputations \(\times\) 4 chains)
  • Diagnostics look good; posterior samples can be trusted
  • Plot posterior densities for select parameters
  • Also shows the 10 densities before stacking
M
Code
plot(bt, c('sex=male', 'pclass=3rd', 'age'), nrow=2)

  • Plot partial effect plots with 0.95 highest posterior density intervals
N
Code
p <- Predict(bt, age, sex, pclass, sibsp=0, fun=plogis, funint=FALSE)
ggplot(p)

  • Compute approximate measure of explained outcome variation for predictors
O
Code
plot(anova(bt))

  • Contrast second class males and females, both at 5 years and 30 years of age, all other things being equal
  • Compute 0.95 HPD interval for the contrast and a joint uncertainty region
  • Compute P(both contrasts < 0), both < -2, and P(either one < 0)
P
Code
k <- contrast(bt, list(sex='male',   age=c(5, 30), pclass='2nd'),
                  list(sex='female', age=c(5, 30), pclass='2nd'),
              cnames = c('age 5 M-F', 'age 30 M-F'))
k
            age Contrast    S.E.   Lower   Upper Pr(Contrast>0)
1age 5 M-F    5  -9.8793 6.82808 -23.816  1.2077         0.0259
2age 30 M-F  30  -4.9013 0.62464  -6.158 -3.7086         0.0000

Intervals are 0.95 highest posterior density intervals
Contrast is the posterior mean 
Code
plot(k)

Code
plot(k, bivar=TRUE)                        # assumes an ellipse
plot(k, bivar=TRUE, bivarmethod='kernel')  # doesn't
P <- PostF(k, pr=TRUE)
Contrast names: age 5 M-F, age 30 M-F 
Code
P(`age 5 M-F` <  0 & `age 30 M-F` <  0)    # note backticks
[1] 0.97415
Code
P(`age 5 M-F` < -2 & `age 30 M-F` < -2)
[1] 0.91235
Code
P(`age 5 M-F` <  0 | `age 30 M-F` <  0)
[1] 1

  • Show posterior distribution of predicted survival probability for a 21 year old male in third class with sibsp=0
  • Predict summarizes with a posterior mean (set posterior.summary='median' to use posterior median)
  • Frequentist multiple imputation estimate was 0.1342
Code
pmean <- Predict(bt, age=21, sex='male', pclass='3rd', sibsp=0, parch=0,
                 fun=plogis, funint=FALSE)
pmean
  age  sex pclass sibsp parch    yhat    lower   upper
1  21 male    3rd     0     0 0.14634 0.096831 0.19664

Response variable (y):  

Limits are 0.95 confidence limits
Code
p <- predict(bt,
             data.frame(age=21, sex='male', pclass='3rd', sibsp=0, parch=0),
             posterior.summary='all', fun=plogis, funint=FALSE)
plot(density(p), main='',
     xlab='Pr(survival) For One Covariate Combination')
abline(v=with(pmean, c(yhat, lower, upper)), col=alpha('blue', 0.5))

  • Compute Pr(survival probability > 0.2) for this man
Code
mean(p > 0.2)
[1] 0.025925
R software used
Package Purpose Functions
Hmisc Miscellaneous functions summary,plsmo,naclus,llist,latex, summarize,Dotplot,describe
Hmisc Imputation transcan,impute,fit.mult.impute,aregImpute,stackMI
rms Modeling datadist,lrm,rcs
Accounting for imputation processMI, LRupdate
Model presentation plot,summary,nomogram,Function,anova
Estimation Predict,summary,contrast
Model validation validate,calibrate
rmsb Misc. Bayesian blrm, stanDx,stanDxplot,plot
rpart1 Recursive partitioning rpart

1 Written by Atkinson and Therneau