12  Logistic Model Case Study: Survival of Titanic Passengers

Data source: The Titanic Passenger List edited by Michael A. Findlay, originally published in Eaton & Haas (1994) Titanic: Triumph and Tragedy, Patrick Stephens Ltd, and expanded with the help of the Internet community. The original html files were obtained from Philip Hind (1999). The dataset was compiled and interpreted by Thomas Cason. It is available in R and spreadsheet formats from hbiostat.org/data under the name titanic3.

12.1 Descriptive Statistics

Code
require(rms)
options(prType='html')   # for print, summary, anova
getHdata(titanic3)        # get dataset from web site
# List of names of variables to analyze
v <- c('pclass','survived','age','sex','sibsp','parch')
t3 <- titanic3[, v]
units(t3$age) <- 'years'
describe(t3)
t3 Descriptives
t3

6 Variables   1309 Observations

pclass
image
nmissingdistinct
130903
 Value        1st   2nd   3rd
 Frequency    323   277   709
 Proportion 0.247 0.212 0.542 

survived: Survived
nmissingdistinctInfoSumMean
1309020.7085000.382

age: Age years
image
nmissingdistinctInfoMeanpMedianGmd.05.10.25.50.75.90.95
1046263980.99929.882916.06 5142128395057
lowest : 0.1667 0.3333 0.4167 0.6667 0.75 , highest: 70.5 71 74 76 80
sex
nmissingdistinct
130902
 Value      female   male
 Frequency     466    843
 Proportion  0.356  0.644 

sibsp: Number of Siblings/Spouses Aboard
image
nmissingdistinctInfoMeanpMedianGmd
1309070.670.49890.50.777
 Value          0     1     2     3     4     5     8
 Frequency    891   319    42    20    22     6     9
 Proportion 0.681 0.244 0.032 0.015 0.017 0.005 0.007 

parch: Number of Parents/Children Aboard
image
nmissingdistinctInfoMeanpMedianGmd
1309080.5490.38500.6375
 Value          0     1     2     3     4     5     6     9
 Frequency   1002   170   113     8     6     6     2     2
 Proportion 0.765 0.130 0.086 0.006 0.005 0.005 0.002 0.002 

Code
spar(ps=6,rt=3)
dd <- datadist(t3)
# describe distributions of variables to rms
options(datadist='dd')
s <- summary(survived ~ age + sex + pclass +
             cut2(sibsp,0:3) + cut2(parch,0:3), data=t3)
plot(s, main='', subtitles=FALSE)
Figure 12.1: Univariable summaries of Titanic survival

Show 4-way relationships after collapsing levels. Suppress estimates based on \(<25\) passengers.

A
Code
require(ggplot2)
tn <- transform(t3,
  agec = ifelse(age < 21, 'child', 'adult'),
  sibsp= ifelse(sibsp == 0, 'no sib/sp', 'sib/sp'),
  parch= ifelse(parch == 0, 'no par/child', 'par/child'))
g <- function(y) if(length(y) < 25) NA else mean(y)
s <- with(tn, summarize(survived,
           llist(agec, sex, pclass, sibsp, parch), g))
# llist, summarize in Hmisc package
ggplot(subset(s, agec != 'NA'),
  aes(x=survived, y=pclass, shape=sex)) +
  geom_point() + facet_grid(agec ~ sibsp * parch) +
  xlab('Proportion Surviving') + ylab('Passenger Class') +
  scale_x_continuous(breaks=c(0, .5, 1))
Figure 12.2: Multi-way summary of Titanic survival

12.3 Binary Logistic Model with Casewise Deletion of Missing Values

  • First fit a model that is saturated with respect to age, sex, pclass
  • Insufficient variation in sibsp, parch to fit complex interactions or nonlinearities.
  • With age appearing in so many terms, giving too many parameters to age creates instabilities and makes many bootstrap repetitions fail to converge or to yield singular covariance matrices
  • Use AIC to determine the global number of knots for age that is “best for the money” in terms of being the most likely to cross-validate well
Code
for(k in 3 : 5) {
  f <- lrm(survived ~ sex*pclass*rcs(age, k) +
           rcs(age, k)*(sibsp + parch), data=t3)
  cat('k=', k, '  AIC=', AIC(f), '\n')
}
k= 3   AIC= 922.9147 
k= 4   AIC= 916.6481 
k= 5   AIC= 921.2103 
  • 4 knots has best (lowest) AIC and we’ll use that going forward
  • Refit that model with x=TRUE, y=TRUE so can do likelihood ratio (LR) tests
  • But start with Wald tests
Code
f1 <- lrm(survived ~ sex*pclass*rcs(age,4) +
          rcs(age,4)*(sibsp + parch), data=t3, x=TRUE, y=TRUE)
print(f1, r2=1:4)   # print all 4 R^2 measures that use only the global LR chi-square

Logistic Regression Model

lrm(formula = survived ~ sex * pclass * rcs(age, 4) + rcs(age, 
    4) * (sibsp + parch), data = t3, x = TRUE, y = TRUE)
Frequencies of Missing Values Due to Each Variable
survived      sex   pclass      age    sibsp    parch 
       0        0        0      263        0        0 
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1046 LR χ2 561.97 R21046 0.416 C 0.876
0 619 d.f. 31 R231,1046 0.398 Dxy 0.751
1 427 Pr(>χ2) <0.0001 R2758.1 0.524 γ 0.753
max |∂log L/∂β| 4×10-8 R231,758.1 0.504 τa 0.363
Brier 0.129
β S.E. Wald Z Pr(>|Z|)
Intercept   -2.2942  3.4139 -0.67 0.5016
sex=male   6.3349  4.2247 1.50 0.1337
pclass=2nd   14.3545  8.4676 1.70 0.0900
pclass=3rd   3.5271  3.2329 1.09 0.2753
age   0.3671  0.2187 1.68 0.0932
age'   -0.8270  0.5684 -1.45 0.1457
age''   2.9159  2.3083 1.26 0.2065
sibsp   -0.8241  0.3173 -2.60 0.0094
parch   0.2397  0.7406 0.32 0.7462
sex=male × pclass=2nd  -13.7220  9.0536 -1.52 0.1296
sex=male × pclass=3rd   -6.3991  4.3000 -1.49 0.1367
sex=male × age   -0.5937  0.2582 -2.30 0.0215
sex=male × age'   1.2395  0.6406 1.93 0.0530
sex=male × age''   -4.3891  2.5546 -1.72 0.0858
pclass=2nd × age   -0.9460  0.4793 -1.97 0.0484
pclass=3rd × age   -0.4106  0.2097 -1.96 0.0502
pclass=2nd × age'   2.2112  1.0827 2.04 0.0411
pclass=3rd × age'   0.7450  0.5632 1.32 0.1859
pclass=2nd × age''   -8.5918  4.1622 -2.06 0.0390
pclass=3rd × age''   -2.0708  2.3726 -0.87 0.3828
age × sibsp   0.0035  0.0277 0.13 0.9005
age' × sibsp   0.1309  0.1076 1.22 0.2237
age'' × sibsp   -0.7549  0.5438 -1.39 0.1651
age × parch   0.0145  0.0468 0.31 0.7558
age' × parch   -0.1092  0.1262 -0.87 0.3869
age'' × parch   0.5123  0.5365 0.95 0.3396
sex=male × pclass=2nd × age   0.7994  0.5140 1.56 0.1199
sex=male × pclass=3rd × age   0.4755  0.2641 1.80 0.0718
sex=male × pclass=2nd × age'   -1.9165  1.1706 -1.64 0.1016
sex=male × pclass=3rd × age'   -0.7422  0.6754 -1.10 0.2719
sex=male × pclass=2nd × age''   7.6432  4.5357 1.69 0.0920
sex=male × pclass=3rd × age''   1.1688  2.8864 0.40 0.6855
Code
anova(f1)
Wald Statistics for survived
χ2 d.f. P
sex (Factor+Higher Order Factors) 187.59 12 <0.0001
All Interactions 60.55 11 <0.0001
pclass (Factor+Higher Order Factors) 100.33 16 <0.0001
All Interactions 47.44 14 <0.0001
age (Factor+Higher Order Factors) 61.35 24 <0.0001
All Interactions 37.51 21 0.0147
Nonlinear (Factor+Higher Order Factors) 28.15 16 0.0303
sibsp (Factor+Higher Order Factors) 20.38 4 0.0004
All Interactions 11.84 3 0.0080
parch (Factor+Higher Order Factors) 3.79 4 0.4349
All Interactions 3.79 3 0.2848
sex × pclass (Factor+Higher Order Factors) 43.72 8 <0.0001
sex × age (Factor+Higher Order Factors) 14.39 9 0.1093
Nonlinear (Factor+Higher Order Factors) 12.54 6 0.0510
Nonlinear Interaction : f(A,B) vs. AB 4.95 2 0.0843
pclass × age (Factor+Higher Order Factors) 18.59 12 0.0989
Nonlinear (Factor+Higher Order Factors) 15.56 8 0.0492
Nonlinear Interaction : f(A,B) vs. AB 9.22 4 0.0559
age × sibsp (Factor+Higher Order Factors) 11.84 3 0.0080
Nonlinear 2.22 2 0.3302
Nonlinear Interaction : f(A,B) vs. AB 2.22 2 0.3302
age × parch (Factor+Higher Order Factors) 3.79 3 0.2848
Nonlinear 1.02 2 0.5994
Nonlinear Interaction : f(A,B) vs. AB 1.02 2 0.5994
sex × pclass × age (Factor+Higher Order Factors) 11.24 6 0.0813
Nonlinear 10.12 4 0.0385
TOTAL NONLINEAR 28.15 16 0.0303
TOTAL INTERACTION 77.40 23 <0.0001
TOTAL NONLINEAR + INTERACTION 80.04 25 <0.0001
TOTAL 243.00 31 <0.0001

Compute the slightly more time-consuming LR tests

Code
af1 <- anova(f1, test='LR')
print(af1, which='subscripts')
Likelihood Ratio Statistics for survived
χ2 d.f. P Tested
sex (Factor+Higher Order Factors) 339.48 12 <0.0001 1,9-13,26-31
All Interactions 76.17 11 <0.0001 9-13,26-31
pclass (Factor+Higher Order Factors) 154.71 16 <0.0001 2-3,9-10,14-19,26-31
All Interactions 64.95 14 <0.0001 9-10,14-19,26-31
age (Factor+Higher Order Factors) 109.11 24 <0.0001 4-6,11-31
All Interactions 53.85 21 0.0001 11-31
Nonlinear (Factor+Higher Order Factors) 37.75 16 0.0016 5-6,12-13,16-19,21-22,24-25,28-31
sibsp (Factor+Higher Order Factors) 26.75 4 <0.0001 7,20-22
All Interactions 12.10 3 0.0070 20-22
parch (Factor+Higher Order Factors) 3.96 4 0.4109 8,23-25
All Interactions 3.95 3 0.2666 23-25
sex × pclass (Factor+Higher Order Factors) 54.58 8 <0.0001 9-10,26-31
sex × age (Factor+Higher Order Factors) 19.68 9 0.0200 11-13,26-31
Nonlinear (Factor+Higher Order Factors) 16.43 6 0.0116 12-13,28-31
Nonlinear Interaction : f(A,B) vs. AB 7.76 2 0.0206 12-13
pclass × age (Factor+Higher Order Factors) 27.45 12 0.0066 14-19,26-31
Nonlinear (Factor+Higher Order Factors) 22.59 8 0.0039 16-19,28-31
Nonlinear Interaction : f(A,B) vs. AB 12.97 4 0.0114 16-19
age × sibsp (Factor+Higher Order Factors) 12.10 3 0.0070 20-22
Nonlinear 2.26 2 0.3224 21-22
Nonlinear Interaction : f(A,B) vs. AB 2.26 2 0.3224 21-22
age × parch (Factor+Higher Order Factors) 3.95 3 0.2666 23-25
Nonlinear 1.03 2 0.5990 24-25
Nonlinear Interaction : f(A,B) vs. AB 1.03 2 0.5990 24-25
sex × pclass × age (Factor+Higher Order Factors) 14.94 6 0.0207 26-31
Nonlinear 14.00 4 0.0073 28-31
TOTAL NONLINEAR 37.75 16 0.0016 5-6,12-13,16-19,21-22,24-25,28-31
TOTAL INTERACTION 107.47 23 <0.0001 9-31
TOTAL NONLINEAR + INTERACTION 117.47 25 <0.0001 5-6,9-31
TOTAL 561.97 31 <0.0001 1-31
  • In the RMS text, 5 knots were used for age and only Wald tests were performed
  • Large \(p\)-value for the 3rd order interaction was used to justify exclusion of these highest-order interactions from the model (and one other term)
  • More evidence for 3rd order interaction from the more accurate LR test
  • Keep this model

Show the many effects of predictors.

B
Code
p <- Predict(f1, age, sex, pclass, sibsp=0, parch=0, fun=plogis)
ggplot(p)
Figure 12.5: Effects of predictors on probability of survival of Titanic passengers, estimated for zero siblings/spouses and zero parents/children
Code
ggplot(Predict(f1, sibsp, age=c(10,15,20,50), conf.int=FALSE))
#
Figure 12.6: Effect of number of siblings and spouses on the log odds of surviving, for third class males

Note that children having many siblings apparently had lower survival. Married adults had slightly higher survival than unmarried ones.

C

But moderate problem with missing data must be dealt with

12.4 Examining Missing Data Patterns

Code
spar(mfrow=c(2,2), top=1, ps=11)
na.patterns <- naclus(titanic3)
require(rpart)      # Recursive partitioning package
who.na <- rpart(is.na(age) ~ sex + pclass + survived +
                sibsp + parch, data=titanic3, minbucket=15)
naplot(na.patterns, 'na per var')
plot(who.na, margin=.1); text(who.na)
plot(na.patterns)
Figure 12.7: Patterns of missing data. Upper left panel shows the fraction of observations missing on each predictor. Lower panel depicts a hierarchical cluster analysis of missingness combinations. The similarity measure shown on the \(Y\)-axis is the fraction of observations for which both variables are missing. Right panel shows the result of recursive partitioning for predicting is.na(age). The rpart function found only strong patterns according to passenger class.
Code
spar(ps=7, rt=3)
plot(summary(is.na(age) ~ sex + pclass + survived +
             sibsp + parch, data=t3))
Figure 12.8: Univariable descriptions of proportion of passengers with missing age

But models almost always provide better descriptive statistics

Code
m <- lrm(is.na(age) ~ sex * pclass + survived + sibsp + parch,
         data=t3)
m

Logistic Regression Model

lrm(formula = is.na(age) ~ sex * pclass + survived + sibsp + 
    parch, data = t3)
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 LR χ2 114.99 R2 0.133 C 0.703
FALSE 1046 d.f. 8 R28,1309 0.078 Dxy 0.406
TRUE 263 Pr(>χ2) <0.0001 R28,630.5 0.156 γ 0.451
max |∂log L/∂β| 5×10-6 Brier 0.148 τa 0.131
β S.E. Wald Z Pr(>|Z|)
Intercept  -2.2030  0.3641 -6.05 <0.0001
sex=male   0.6440  0.3953 1.63 0.1033
pclass=2nd  -1.0079  0.6658 -1.51 0.1300
pclass=3rd   1.6124  0.3596 4.48 <0.0001
survived  -0.1806  0.1828 -0.99 0.3232
sibsp   0.0435  0.0737 0.59 0.5548
parch  -0.3526  0.1253 -2.81 0.0049
sex=male × pclass=2nd   0.1347  0.7545 0.18 0.8583
sex=male × pclass=3rd  -0.8563  0.4214 -2.03 0.0422
Code
anova(m)
Wald Statistics for is.na(age)
χ2 d.f. P
sex (Factor+Higher Order Factors) 5.61 3 0.1324
All Interactions 5.58 2 0.0614
pclass (Factor+Higher Order Factors) 68.43 4 <0.0001
All Interactions 5.58 2 0.0614
survived 0.98 1 0.3232
sibsp 0.35 1 0.5548
parch 7.92 1 0.0049
sex × pclass (Factor+Higher Order Factors) 5.58 2 0.0614
TOTAL 82.90 8 <0.0001

pclass and parch are the important predictors of missing age.

12.5 Single Conditional Mean Imputation

Single imputation is not the preferred approach here. Click below to see this section.

First try: conditional mean imputation
Default spline transformation for age caused distribution of imputed values to be much different from non-imputed ones; constrain to linear. Also force discrete numeric variables to be linear because knots are hard to determine for them.

Code
xtrans <- transcan(~ I(age) + sex + pclass + I(sibsp) + I(parch),
                   imputed=TRUE, pl=FALSE, pr=FALSE, data=t3)
summary(xtrans)
transcan(x = ~I(age) + sex + pclass + I(sibsp) + I(parch), imputed = TRUE, 
    pr = FALSE, pl = FALSE, data = t3)

Iterations: 4 

R-squared achieved in predicting each variable:

   age    sex pclass  sibsp  parch 
 0.236  0.075  0.232  0.200  0.173 

Adjusted R-squared:

   age    sex pclass  sibsp  parch 
 0.233  0.072  0.229  0.197  0.170 

Coefficients of canonical variates for predicting each (row) variable

       age   sex   pclass sibsp parch
age           1.33  5.98  -3.16 -0.85
sex     0.04       -0.67  -0.04 -0.80
pclass  0.08 -0.32         0.14  0.02
sibsp  -0.02 -0.01  0.08         0.39
parch   0.00 -0.15  0.01   0.28      

Summary of imputed values

Starting estimates for imputed values:

   age    sex pclass  sibsp  parch 
    28      2      3      0      0 
Code
# Look at mean imputed values by sex,pclass and observed means
# age.i is age, filled in with conditional mean estimates
age.i <- with(t3, impute(xtrans, age, data=t3))
i <- is.imputed(age.i)
with(t3, tapply(age.i[i], list(sex[i],pclass[i]), mean))
            1st      2nd      3rd
female 37.64677 29.78567 21.67031
male   42.21854 32.55474 26.19231
Code
with(t3, tapply(age, list(sex,pclass), mean, na.rm=TRUE))
            1st      2nd      3rd
female 37.03759 27.49919 22.18531
male   41.02925 30.81540 25.96227
Code
dd   <- datadist(dd, age.i)
f.si <- lrm(survived ~ sex * pclass * rcs(age.i, 4) +
            rcs(age.i, 4) * (sibsp + parch), data=t3, x=TRUE, y=TRUE)
print(f.si, coefs=FALSE)

Logistic Regression Model

lrm(formula = survived ~ sex * pclass * rcs(age.i, 4) + rcs(age.i, 
    4) * (sibsp + parch), data = t3, x = TRUE, y = TRUE)
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 LR χ2 649.29 R2 0.532 C 0.864
0 809 d.f. 31 R231,1309 0.376 Dxy 0.728
1 500 Pr(>χ2) <0.0001 R231,927 0.487 γ 0.731
max |∂log L/∂β| 0.0006 Brier 0.132 τa 0.344
Code
spar(ps=12)
p1 <- Predict(f1,   age,   pclass, sex, sibsp=0, fun=plogis)
p2 <- Predict(f.si, age.i, pclass, sex, sibsp=0, fun=plogis)
p  <- rbind('Casewise Deletion'=p1, 'Single Imputation'=p2,
            rename=c(age.i='age'))   # creates .set. variable
ggplot(p, groups='sex', ylab='Probability of Surviving')
anova(f.si, test='LR')
Likelihood Ratio Statistics for survived
χ2 d.f. P
sex (Factor+Higher Order Factors) 399.94 12 <0.0001
All Interactions 74.26 11 <0.0001
pclass (Factor+Higher Order Factors) 163.16 16 <0.0001
All Interactions 61.31 14 <0.0001
age.i (Factor+Higher Order Factors) 109.88 24 <0.0001
All Interactions 55.34 21 <0.0001
Nonlinear (Factor+Higher Order Factors) 40.70 16 0.0006
sibsp (Factor+Higher Order Factors) 28.84 4 <0.0001
All Interactions 12.81 3 0.0051
parch (Factor+Higher Order Factors) 1.55 4 0.8177
All Interactions 0.26 3 0.9681
sex × pclass (Factor+Higher Order Factors) 50.28 8 <0.0001
sex × age.i (Factor+Higher Order Factors) 19.61 9 0.0205
Nonlinear (Factor+Higher Order Factors) 15.35 6 0.0177
Nonlinear Interaction : f(A,B) vs. AB 8.33 2 0.0156
pclass × age.i (Factor+Higher Order Factors) 23.86 12 0.0213
Nonlinear (Factor+Higher Order Factors) 19.67 8 0.0117
Nonlinear Interaction : f(A,B) vs. AB 11.63 4 0.0203
age.i × sibsp (Factor+Higher Order Factors) 12.81 3 0.0051
Nonlinear 1.50 2 0.4718
Nonlinear Interaction : f(A,B) vs. AB 1.50 2 0.4718
age.i × parch (Factor+Higher Order Factors) 0.26 3 0.9681
Nonlinear 0.02 2 0.9876
Nonlinear Interaction : f(A,B) vs. AB 0.02 2 0.9876
sex × pclass × age.i (Factor+Higher Order Factors) 11.88 6 0.0647
Nonlinear 10.57 4 0.0318
TOTAL NONLINEAR 40.70 16 0.0006
TOTAL INTERACTION 108.27 23 <0.0001
TOTAL NONLINEAR + INTERACTION 117.26 25 <0.0001
TOTAL 649.29 31 <0.0001
Figure 12.9: Predicted probability of survival for males from fit using casewise deletion (bottom) and single conditional mean imputation (top). is set to zero for these predicted values.
Figure 12.10: Predicted probability of survival for males from fit using casewise deletion (bottom) and single conditional mean imputation (top). is set to zero for these predicted values.
D

12.6 Multiple Imputation

The following uses aregImpute with predictive mean matching. By default, aregImpute does not transform age when it is being predicted from the other variables. Four knots are used to transform age when used to impute other variables (not needed here as no other missings were present). Since the fraction of observations with missing age is \(\frac{263}{1309} = 0.2\) we use 20 imputations.

Force sibsp and parch to be linear for imputation, because their highly discrete distributions make it difficult to choose knots for splines.
Code
set.seed(17)         # so can reproduce random aspects
mi <- aregImpute(~ age + sex + pclass +
                 I(sibsp) + I(parch) + survived,
                 data=t3, n.impute=20, nk=4, pr=FALSE)
mi

Multiple Imputation using Bootstrap and PMM

aregImpute(formula = ~age + sex + pclass + I(sibsp) + I(parch) + 
    survived, data = t3, n.impute = 20, nk = 4, pr = FALSE)

n: 1309     p: 6    Imputations: 20     nk: 4 

Number of NAs:
     age      sex   pclass    sibsp    parch survived 
     263        0        0        0        0        0 

         type d.f.
age         s    1
sex         c    1
pclass      c    2
sibsp       l    1
parch       l    1
survived    l    1

Transformation of Target Variables Forced to be Linear

R-squares for Predicting Non-Missing Values for Each Variable
Using Last Imputations of Predictors
  age 
0.294 
Code
# Print the first 10 imputations for the first 10 passengers
#  having missing age
mi$imputed$age[1:10, 1:10]
    [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
16    29 71.0   62   41   24   71 48.0   30   28    33
38    42 58.0   58   64   62   28 51.0   36   29    29
41    42 32.5   55   24   58   60 54.0   47   23    54
47    31 28.5   48   37   60   50 28.5   38   42    47
60    28 42.0   38   31   58   21 45.0    2   61    42
70    38 58.0   30   17   43   39 64.0   52   33    30
71    37 46.0   30   47   30   36 47.0   65   30    40
75    62 46.0   47   70   65   54 21.0   47   46    56
81    24 25.0   17   28   36   29 42.0   56   48    41
107   42 23.0   60   41   46   58 21.0   61   33    62

Show the distribution of imputed (black) and actual ages (gray).

E
Code
plot(mi)
Ecdf(t3$age, add=TRUE, col='gray', lwd=2,
     subtitles=FALSE)
Figure 12.11: Distributions of imputed and actual ages for the Titanic dataset. Imputed values are in black and actual ages in gray.
  • Fit logistic models for 20 completed datasets and print the ratio of imputation-corrected variances to average ordinary variances.
  • Use method of Chan & Meng to get LR tests
  • This method takes final \(\hat{\beta}\) from a single model fit on 20 stacked completed datasets
  • But standard errors come from the usual Rubin’s rule and the 20 fits
  • rms::processMI computes the LR statistics from special information saved by fit.mult.impute triggered by lrt=TRUE
  • The Hmisc package runifChanged function is used to save the result and not spend 1m running it again until an input changes
  • The rms LRupdate function is run to fix likelihood ratio-related statistics (LR test, its \(p\)-value, various \(R^2\) measures) using the overall Chan & Meng model LR \(\chi^2\) computed by processMI
  • Two of the \(R^2\) printed use an effective sample size of 927 for the unbalanced binary survived variable
F
Code
runmi <- function()
  fit.mult.impute(survived ~ sex * pclass * rcs(age, 4) + rcs(age, 4) * (sibsp + parch),
                  lrm, mi, data=t3, pr=FALSE, lrt=TRUE)  # lrt implies x=TRUE y=TRUE + more
seed <- 17
f.mi <- runifChanged(runmi, seed, mi, t3)
afmi <- processMI(f.mi, 'anova')
# Print imputation penalty indexes
prmiInfo(afmi)
Imputation penalties
Test Missing
Information
Fraction
Denominator
d.f.
χ2 Discount
sex (Factor+Higher Order Factors) 0.131 13387.9 0.869
All Interactions 0.180 6455.1 0.820
pclass (Factor+Higher Order Factors) 0.106 27217.2 0.894
All Interactions 0.154 11285.5 0.846
age (Factor+Higher Order Factors) 0.179 14281.1 0.821
All Interactions 0.175 12960.7 0.825
Nonlinear (Factor+Higher Order Factors) 0.160 11937.3 0.840
sibsp (Factor+Higher Order Factors) 0.209 1744.4 0.791
All Interactions 0.215 1235.9 0.785
parch (Factor+Higher Order Factors) 0.179 2362.9 0.821
All Interactions 0.219 1183.5 0.781
sex × pclass (Factor+Higher Order Factors) 0.153 6502.3 0.847
sex × age (Factor+Higher Order Factors) 0.210 3875.9 0.790
Nonlinear (Factor+Higher Order Factors) 0.223 2293.9 0.777
Nonlinear Interaction : f(A,B) vs. AB 0.000 Inf 1.000
pclass × age (Factor+Higher Order Factors) 0.169 7940.7 0.831
Nonlinear (Factor+Higher Order Factors) 0.186 4413.0 0.814
Nonlinear Interaction : f(A,B) vs. AB 0.181 2330.0 0.819
age × sibsp (Factor+Higher Order Factors) 0.215 1235.9 0.785
Nonlinear 0.147 1765.7 0.853
Nonlinear Interaction : f(A,B) vs. AB 0.147 1765.7 0.853
age × parch (Factor+Higher Order Factors) 0.219 1183.5 0.781
Nonlinear 0.213 837.2 0.787
Nonlinear Interaction : f(A,B) vs. AB 0.213 837.2 0.787
sex × pclass × age (Factor+Higher Order Factors) 0.215 2476.2 0.785
Nonlinear 0.260 1123.0 0.740
TOTAL NONLINEAR 0.160 11937.3 0.840
TOTAL INTERACTION 0.167 15608.7 0.833
TOTAL NONLINEAR + INTERACTION 0.165 17345.0 0.835
TOTAL 0.144 28342.6 0.856
  • None of the denominator d.f. is small enough for us to worry about the \(\chi^2\) approximation
  • Take the ratio of selected LR statistics after multiple imputation to that from casewise deletion
Code
afmi
Likelihood Ratio Statistics for survived
χ2 d.f. P
sex (Factor+Higher Order Factors) 345.17 12 <0.0001
All Interactions 59.41 11 <0.0001
pclass (Factor+Higher Order Factors) 161.47 16 <0.0001
All Interactions 50.55 14 <0.0001
age (Factor+Higher Order Factors) 101.66 24 <0.0001
All Interactions 43.61 21 0.0026
Nonlinear (Factor+Higher Order Factors) 39.97 16 0.0008
sibsp (Factor+Higher Order Factors) 24.23 4 <0.0001
All Interactions 8.94 3 0.0300
parch (Factor+Higher Order Factors) 3.19 4 0.5272
All Interactions 1.72 3 0.6329
sex × pclass (Factor+Higher Order Factors) 42.26 8 <0.0001
sex × age (Factor+Higher Order Factors) 14.42 9 0.1081
Nonlinear (Factor+Higher Order Factors) 11.47 6 0.0748
Nonlinear Interaction : f(A,B) vs. AB 7.94 2 0.0189
pclass × age (Factor+Higher Order Factors) 19.68 12 0.0734
Nonlinear (Factor+Higher Order Factors) 14.76 8 0.0639
Nonlinear Interaction : f(A,B) vs. AB 8.93 4 0.0629
age × sibsp (Factor+Higher Order Factors) 8.94 3 0.0300
Nonlinear 1.26 2 0.5313
Nonlinear Interaction : f(A,B) vs. AB 1.26 2 0.5313
age × parch (Factor+Higher Order Factors) 1.72 3 0.6329
Nonlinear 1.73 2 0.4214
Nonlinear Interaction : f(A,B) vs. AB 1.73 2 0.4214
sex × pclass × age (Factor+Higher Order Factors) 9.11 6 0.1676
Nonlinear 7.66 4 0.1050
TOTAL NONLINEAR 39.97 16 0.0008
TOTAL INTERACTION 87.90 23 <0.0001
TOTAL NONLINEAR + INTERACTION 100.00 25 <0.0001
TOTAL 567.58 31 <0.0001
Code
f.mi <- LRupdate(f.mi, afmi)
print(f.mi, r2=1:4)   # print all 4 imputation-adjusted R^2

Logistic Regression Model

fit.mult.impute(formula = survived ~ sex * pclass * rcs(age, 
    4) + rcs(age, 4) * (sibsp + parch), fitter = lrm, xtrans = mi, 
    data = t3, lrt = TRUE, pr = FALSE)
Model Likelihood
Ratio Test
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 LR χ2 567.58 R21309 0.352 C 0.868
0 809 d.f. 31 R231,1309 0.336 Dxy 0.736
1 500 Pr(>χ2) <0.0001 R2927 0.458 γ 0.737
max |∂log L/∂β| 0.003 R231,927 0.439 τa 0.347
Brier 0.130
β S.E. Wald Z Pr(>|Z|)
Intercept   -0.3199  3.2655 -0.10 0.9220
sex=male   5.8145  4.1248 1.41 0.1586
pclass=2nd   11.5383  8.2722 1.39 0.1631
pclass=3rd   2.3785  3.1614 0.75 0.4518
age   0.2701  0.2149 1.26 0.2087
age'   -0.6430  0.5367 -1.20 0.2309
age''   2.0278  2.2600 0.90 0.3696
sibsp   -0.7625  0.3165 -2.41 0.0160
parch   -0.4562  0.5576 -0.82 0.4133
sex=male × pclass=2nd  -11.5679  8.8620 -1.31 0.1918
sex=male × pclass=3rd   -6.0402  4.1905 -1.44 0.1495
sex=male × age   -0.5758  0.2578 -2.23 0.0255
sex=male × age'   1.2105  0.6099 1.98 0.0472
sex=male × age''   -3.8105  2.5114 -1.52 0.1292
pclass=2nd × age   -0.8021  0.4775 -1.68 0.0930
pclass=3rd × age   -0.3556  0.2096 -1.70 0.0898
pclass=2nd × age'   1.9084  1.0268 1.86 0.0631
pclass=3rd × age'   0.6770  0.5353 1.26 0.2059
pclass=2nd × age''   -6.6070  4.0714 -1.62 0.1046
pclass=3rd × age''   -1.8293  2.3224 -0.79 0.4309
age × sibsp   0.0070  0.0275 0.26 0.7981
age' × sibsp   0.0987  0.0986 1.00 0.3169
age'' × sibsp   -0.4979  0.5199 -0.96 0.3382
age × parch   0.0362  0.0396 0.91 0.3607
age' × parch   -0.1208  0.1115 -1.08 0.2783
age'' × parch   0.4435  0.5094 0.87 0.3839
sex=male × pclass=2nd × age   0.6870  0.5140 1.34 0.1813
sex=male × pclass=3rd × age   0.4564  0.2625 1.74 0.0821
sex=male × pclass=2nd × age'   -1.6435  1.1151 -1.47 0.1405
sex=male × pclass=3rd × age'   -0.7801  0.6367 -1.23 0.2205
sex=male × pclass=2nd × age''   5.7658  4.4553 1.29 0.1956
sex=male × pclass=3rd × age''   1.7728  2.7888 0.64 0.5250
Code
round(afmi[c(1,3,5,30), 'Chi-Square'] / af1[c(1,3,5,30), 'Chi-Square'], 3)
   sex  (Factor+Higher Order Factors) pclass  (Factor+Higher Order Factors) 
                                1.017                                 1.044 
   age  (Factor+Higher Order Factors)                                 TOTAL 
                                0.932                                 1.010 

G
  • Using all available data resulted in increases in predictive information for sex, pclass and strangely a reduction for age

For each completed dataset run bootstrap validation of model performance indexes and the nonparametric calibration curve. Because the 20 analyses of completed datasets help to average out some of the noise in bootstrap estimates we can use fewer bootstrap repetitions (100) than usual (300 or so).

Code
val <- function(fit)
  list(validate  = validate (fit, B=100),
       calibrate = calibrate(fit, B=100) )

runmi <- function()
  fit.mult.impute(       # 1m
    survived ~ sex * pclass * rcs(age,4) +
    rcs(age,4) * (sibsp + parch),
    lrm, mi, data=t3, pr=FALSE,
    fun=val, fitargs=list(x=TRUE, y=TRUE))
seed <- 19
f <- runifChanged(runmi, seed, mi, t3, val)

  • Display the 20 bootstrap internal validations averaged over the multiple imputations.
  • Show the 20 individual calibration curves then the first 3 in more detail followed by the overall calibration estimate
Code
val <- processMI(f, 'validate')
print(val, digits=3)
Index Original
Sample
Training
Sample
Test
Sample
Optimism Corrected
Index
Lower Upper Successful
Resamples
Dxy 0.739 0.754 0.728 0.026 0.713 0.671 0.755 1545
R2 0.543 0.561 0.495 0.066 0.477 0.308 0.562 1545
Intercept 0 0 -0.109 0.109 -0.109 -0.415 0.133 1545
Slope 1 1 0.832 0.168 0.832 0.421 1.062 1545
Emax 0 0 0.068 -0.068 0.068 -0.018 0.281 1545
D 0.509 0.532 0.453 0.078 0.431 0.25 0.531 1545
U -0.002 -0.002 0.005 -0.006 0.005 -0.041 0.051 1545
Q 0.511 0.533 0.449 0.085 0.426 0.243 0.536 1545
B 0.129 0.126 0.133 -0.007 0.136 0.124 0.149 1545
g 2.392 3.587 2.714 0.873 1.519 -18.671 2.623 1545
gp 0.352 0.358 0.331 0.026 0.326 0.238 0.362 1545
Code
spar(mfrow=c(2,2), top=1, bot=2)
cal <- processMI(f, 'calibrate', nind=3)

n=1309   Mean absolute error=0.009   Mean squared error=0.00013
0.9 Quantile of absolute error=0.018

n=1309   Mean absolute error=0.008   Mean squared error=1e-04
0.9 Quantile of absolute error=0.016

n=1309   Mean absolute error=0.009   Mean squared error=0.00018
0.9 Quantile of absolute error=0.022

n=1309   Mean absolute error=0.009   Mean squared error=0.00017
0.9 Quantile of absolute error=0.022
Code
# plot(cal) for full-size final calibration curve
Figure 12.12: Estimated calibration curves for the Titanic risk model, accounting for multiple imputation
Figure 12.13: Estimated calibration curves for the Titanic risk model, accounting for multiple imputation

Return to the stacked fit and compare it to the fit from single imputation

Code
p1 <- Predict(f.si,  age.i, pclass, sex, sibsp=0, fun=plogis)
p2 <- Predict(f.mi,  age,   pclass, sex, sibsp=0, fun=plogis)
p  <- rbind('Single Imputation'=p1, 'Multiple Imputation'=p2,
            rename=c(age.i='age'))
ggplot(p, groups='sex', ylab='Probability of Surviving')
Figure 12.14: Predicted probability of survival for males from fit using single conditional mean imputation again (top) and multiple random draw imputation (bottom). Both sets of predictions are for sibsp=0.

12.7 Summarizing the Fitted Model

Show odds ratios for changes in predictor values

H
Code
spar(bot=1, top=0.5, ps=8)
# Get predicted values for certain types of passengers
s <- summary(f.mi, age=c(1,30), sibsp=0:1)
# override default ranges for 3 variables
plot(s, log=TRUE, main='')
Figure 12.15: Odds ratios for some predictor settings
Code
phat <- predict(f.mi,
                combos <-
         expand.grid(age=c(2,21,50),sex=levels(t3$sex),
                     pclass=levels(t3$pclass),
                     sibsp=0, parch=0), type='fitted')
# Can also use Predict(f.mi, age=c(2,21,50), sex, pclass,
#                      sibsp=0, fun=plogis)$yhat
options(digits=1)
data.frame(combos, phat)
   age    sex pclass sibsp parch phat
1    2 female    1st     0     0 0.55
2   21 female    1st     0     0 0.99
3   50 female    1st     0     0 0.96
4    2   male    1st     0     0 0.99
5   21   male    1st     0     0 0.49
6   50   male    1st     0     0 0.28
7    2 female    2nd     0     0 1.00
8   21 female    2nd     0     0 0.88
9   50 female    2nd     0     0 0.80
10   2   male    2nd     0     0 0.99
11  21   male    2nd     0     0 0.11
12  50   male    2nd     0     0 0.07
13   2 female    3rd     0     0 0.87
14  21 female    3rd     0     0 0.58
15  50 female    3rd     0     0 0.45
16   2   male    3rd     0     0 0.81
17  21   male    3rd     0     0 0.15
18  50   male    3rd     0     0 0.05
Code
options(digits=5)

We can also get predicted values by creating an R function that will evaluate the model on demand, but that only works if there are no 3rd-order interactions.

I
Code
pred.logit <- Function(f.mi)
# Note: if don't define sibsp to pred.logit, defaults to 0
plogis(pred.logit(age=c(2,21,50), sex='male', pclass='3rd'))

A nomogram could be used to obtain predicted values manually, but this is not feasible when so many interaction terms are present.

J

12.8 Bayesian Analysis

  • Repeat the multiple imputation-based approach but using a Bayesian binary logistic model
  • Using default blrm function normal priors on regression coefficients with zero mean and large SD making the priors almost flat
  • blrm uses the rcmdstan and rstan packages that provides the full power of Stan to R
  • Here we use cmdstan with rcmdstan
  • rmsb has its own caching mechanism that efficiently stores the model fit object (and all its posterior draws) and reads it back from disk install of running it again, until one of the inputs change
  • See this for more about the rmsb package
  • Could use smaller prior SDs to get penalized estimates
  • Using 4 independent Markov chain Hamiltonion posterior sampling procedures each with 1000 burn-in iterations that are discarded, and 1000 “real” iterations for a total of 4000 posterior sample draws
  • Use the first 10 multiple imputations already developed above (object mi), running the Bayesian procedure separately for 10 completed datasets
  • Merely have to stack the posterior draws into one giant sample to account for imputation and get correct posterior distribution
K
Code
# Use all available CPU cores less 1.  Each chain will be run on its
# own core.
require(rmsb)
options(mc.cores=parallel::detectCores() - 1, rmsb.backend='cmdstan')
cmdstanr::set_cmdstan_path(cmdstan.loc)
# cmdstan.loc is defined in ~/.Rprofile

# 10 Bayesian analyses took 3m on 11 cores
set.seed(21)
bt <- stackMI(survived ~ sex * pclass * rcs(age, 4) +
          rcs(age, 4) * (sibsp + parch),
          blrm, mi, data=t3, n.impute=10, refresh=25,
          file='bt.rds')
bt

Bayesian Logistic Model

Dirichlet Priors With Concentration Parameter 0.541 for Intercepts

stackMI(formula = survived ~ sex * pclass * rcs(age, 4) + rcs(age, 
    4) * (sibsp + parch), fitter = blrm, xtrans = mi, data = t3, 
    n.impute = 10, refresh = 25, file = "bt.rds")
Mixed Calibration/
Discrimination Indexes
Discrimination
Indexes
Rank Discrim.
Indexes
Obs 1309 B 0.132 [0.129, 0.135] g 2.788 [2.278, 3.34] C 0.867 [0.862, 0.871]
0 809 gp 0.361 [0.344, 0.378] Dxy 0.733 [0.724, 0.743]
1 500 EV 0.469 [0.427, 0.514]
Draws 40000 v 8.208 [4.366, 14.027]
Chains 4 vp 0.111 [0.102, 0.121]
Time 12.9s
Imputations 10
p 31
Mean β Median β S.E. Lower Upper Pr(β>0) Symmetry
Intercept   -3.0016   -1.9638   5.1956  -14.4615   5.1618  0.3087  0.59
sex=male   9.8526   8.9820   5.8701   -0.4891  21.7839  0.9836  1.49
pclass=2nd   21.7885   20.2816  10.5001   3.9299  42.7571  0.9992  1.49
pclass=3rd   5.4380   4.3874   5.1020   -2.7684  16.5104  0.9073  1.72
age   0.4820   0.4209   0.3422   -0.0677   1.2212  0.9684  1.66
age'   -1.1077   -0.9948   0.8069   -2.8096   0.2749  0.0490  0.66
age''   4.2214   3.8415   3.2494   -1.6503  10.9017  0.9302  1.40
sibsp   -0.9472   -0.9316   0.3209   -1.5717  -0.3176  0.0004  0.86
parch   -0.5099   -0.5841   0.7041   -1.7985   1.1476  0.1657  1.58
sex=male × pclass=2nd  -22.0085  -20.7067  11.1762  -44.4843  -2.1069  0.0045  0.73
sex=male × pclass=3rd   -9.8521   -8.9788   5.9306  -21.9200   0.5860  0.0174  0.67
sex=male × age   -0.8703   -0.8171   0.3741   -1.6214  -0.2037  0.0007  0.67
sex=male × age'   1.8201   1.7158   0.8603   0.2781   3.5738  0.9962  1.41
sex=male × age''   -6.8543   -6.5072   3.4333  -13.9183  -0.6312  0.0087  0.74
pclass=2nd × age   -1.4306   -1.3525   0.6075   -2.6571  -0.3859  0.0002  0.70
pclass=3rd × age   -0.5896   -0.5279   0.3372   -1.3000  -0.0348  0.0073  0.60
pclass=2nd × age'   3.1235   2.9911   1.2865   0.7506   5.6437  0.9996  1.33
pclass=3rd × age'   1.1878   1.0764   0.8015   -0.1780   2.8861  0.9654  1.50
pclass=2nd × age''  -12.3231  -11.8618   5.0131  -22.6196  -3.3067  0.0008  0.78
pclass=3rd × age''   -4.1482   -3.7972   3.2730  -10.8597   1.7700  0.0779  0.73
age × sibsp   0.0172   0.0167   0.0274   -0.0349   0.0724  0.7345  1.06
age' × sibsp   0.0691   0.0679   0.0973   -0.1211   0.2586  0.7593  1.03
age'' × sibsp   -0.4707   -0.4650   0.5183   -1.5236   0.5110  0.1822  0.96
age × parch   0.0413   0.0466   0.0480   -0.0688   0.1281  0.8426  0.67
age' × parch   -0.1307   -0.1391   0.1273   -0.3749   0.1369  0.1406  1.27
age'' × parch   0.5594   0.5844   0.5660   -0.6098   1.6401  0.8454  0.86
sex=male × pclass=2nd × age   1.3207   1.2527   0.6482   0.1499   2.6119  0.9954  1.34
sex=male × pclass=3rd × age   0.7321   0.6787   0.3780   0.0697   1.5050  0.9938  1.49
sex=male × pclass=2nd × age'   -2.8786   -2.7651   1.3801   -5.6963  -0.3919  0.0063  0.79
sex=male × pclass=3rd × age'   -1.3579   -1.2598   0.8771   -3.1696   0.2066  0.0350  0.72
sex=male × pclass=2nd × age''   11.3541   11.0050   5.4060   1.2243  22.1670  0.9919  1.23
sex=male × pclass=3rd × age''   4.0550   3.7541   3.6040   -2.6386  11.3923  0.8848  1.28
  • Note that fit indexes have HPD uncertainty intervals
  • Everthing above accounts for imputation
  • Look at diagnostics
L
Code
stanDx(bt)
Diagnostics for each of 10 imputations

Iterations: 2000 on each of 4 chains, with 4000 posterior distribution samples saved

For each parameter, n_eff is a crude measure of effective sample size
and Rhat is the potential scale reduction factor on split chains
(at convergence, Rhat=1)


Imputation 1 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.906 0.993 1.018 1.007 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001     1288     1806
2    beta[1] 1.002      899     1224
3    beta[2] 1.005      806      948
4    beta[3] 1.001     1934     1883
5    beta[4] 1.003      878     1358
6    beta[5] 1.002     1115     1135
7    beta[6] 1.002     1317     2033
8    beta[7] 1.001     2398     3063
9    beta[8] 1.000     2649     2367
10   beta[9] 1.002      790      953
11  beta[10] 1.002     1897     2058
12  beta[11] 1.003      992     1384
13  beta[12] 1.003      902     1159
14  beta[13] 1.002     1607     2207
15  beta[14] 1.001      814     1015
16  beta[15] 1.002     1842     2570
17  beta[16] 1.004      784      957
18  beta[17] 1.003     1872     2411
19  beta[18] 1.001      999     1393
20  beta[19] 1.002     1947     2484
21  beta[20] 1.001     4116     3144
22  beta[21] 1.000     3986     3084
23  beta[22] 1.001     4217     3328
24  beta[23] 1.001     3204     2279
25  beta[24] 1.002     4201     2718
26  beta[25] 1.001     4610     3132
27  beta[26] 1.004      734      841
28  beta[27] 1.002     1030     1618
29  beta[28] 1.003      719      916
30  beta[29] 1.001     2000     2495
31  beta[30] 1.003      830     1063
32  beta[31] 1.001     2148     1897

Imputation 2 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.936 0.973 1.029 0.949 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.005      822     1270
2    beta[1] 1.007      723      903
3    beta[2] 1.004      716      884
4    beta[3] 1.002     1752     2054
5    beta[4] 1.007      646      935
6    beta[5] 1.004      763     1057
7    beta[6] 1.003      982     1544
8    beta[7] 1.001     1714     2573
9    beta[8] 1.001     2806     3039
10   beta[9] 1.004      635      894
11  beta[10] 1.003     1611     1867
12  beta[11] 1.005      689     1027
13  beta[12] 1.004      810      982
14  beta[13] 1.001     1152     1699
15  beta[14] 1.005      615      808
16  beta[15] 1.003     1405     2396
17  beta[16] 1.006      582      702
18  beta[17] 1.001     2194     2914
19  beta[18] 1.006      714     1235
20  beta[19] 1.001     2113     1965
21  beta[20] 1.000     5147     3147
22  beta[21] 1.003     4451     3113
23  beta[22] 1.001     4731     3105
24  beta[23] 1.002     3125     2897
25  beta[24] 1.000     4363     2649
26  beta[25] 1.002     3831     2669
27  beta[26] 1.006      581      681
28  beta[27] 1.005      943     1555
29  beta[28] 1.005      561      730
30  beta[29] 1.001     2117     1941
31  beta[30] 1.005      634      848
32  beta[31] 1.001     2214     1909

Imputation 3 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.071 0.928 1.017 1.029 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.003      956     1499
2    beta[1] 1.004      957     1239
3    beta[2] 1.004      678     1128
4    beta[3] 1.004     1866     2002
5    beta[4] 1.002      954     1455
6    beta[5] 1.003      890     1195
7    beta[6] 1.002     1248     2220
8    beta[7] 1.001     1975     2521
9    beta[8] 1.003     1730     2279
10   beta[9] 1.002      645     1006
11  beta[10] 1.002     1718     1678
12  beta[11] 1.004      852     1262
13  beta[12] 1.001      779     1185
14  beta[13] 1.001     1409     2383
15  beta[14] 1.003      731      930
16  beta[15] 1.002     1242     1674
17  beta[16] 1.003      705      993
18  beta[17] 1.002     1420     1960
19  beta[18] 1.002      875     1294
20  beta[19] 1.001     1799     2366
21  beta[20] 1.002     2592     2894
22  beta[21] 1.001     2877     3184
23  beta[22] 1.001     3155     2736
24  beta[23] 1.000     1834     2640
25  beta[24] 1.002     2335     2568
26  beta[25] 1.001     2781     2793
27  beta[26] 1.003      593      883
28  beta[27] 1.004     1032     1807
29  beta[28] 1.003      603      989
30  beta[29] 1.001     1497     2329
31  beta[30] 1.003      679     1153
32  beta[31] 1.003     2133     1845

Imputation 4 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.01 0.911 0.976 0.987 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001     1080     1456
2    beta[1] 1.002      821     1091
3    beta[2] 1.001      714      884
4    beta[3] 1.002     1793     1703
5    beta[4] 1.003      928     1420
6    beta[5] 1.002      868     1143
7    beta[6] 1.002     1049     1229
8    beta[7] 1.002     2324     2706
9    beta[8] 1.000     2387     2238
10   beta[9] 1.003      604      775
11  beta[10] 1.003     1663     1678
12  beta[11] 1.002      819      980
13  beta[12] 1.002      766     1063
14  beta[13] 1.001     1122     1722
15  beta[14] 1.005      680      884
16  beta[15] 1.001     1530     1669
17  beta[16] 1.001      690      890
18  beta[17] 1.001     1821     2315
19  beta[18] 1.003      851      992
20  beta[19] 1.001     1853     2180
21  beta[20] 1.003     3061     2795
22  beta[21] 1.001     2961     2967
23  beta[22] 1.001     3168     2974
24  beta[23] 1.001     2549     2469
25  beta[24] 1.000     3095     2732
26  beta[25] 1.001     3556     2992
27  beta[26] 1.001      611      722
28  beta[27] 1.002     1222     1682
29  beta[28] 1.001      597      814
30  beta[29] 1.000     2013     2727
31  beta[30] 1.001      660      913
32  beta[31] 1.001     2148     2308

Imputation 5 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.946 0.982 0.935 0.975 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001     1412     1980
2    beta[1] 1.002     1174     1418
3    beta[2] 1.002     1044     1245
4    beta[3] 1.000     1924     2064
5    beta[4] 1.003     1225     1811
6    beta[5] 1.002     1181     1278
7    beta[6] 1.002     1560     2172
8    beta[7] 1.001     2511     2002
9    beta[8] 1.002     3922     2982
10   beta[9] 1.005      905     1159
11  beta[10] 1.000     1979     1759
12  beta[11] 1.002     1188     1478
13  beta[12] 1.002     1197     1603
14  beta[13] 1.002     1498     1946
15  beta[14] 1.004      975     1159
16  beta[15] 1.000     1867     2283
17  beta[16] 1.003      998     1162
18  beta[17] 1.000     2103     2200
19  beta[18] 1.002     1216     1535
20  beta[19] 1.000     1922     2494
21  beta[20] 1.002     3775     3040
22  beta[21] 1.001     3704     2557
23  beta[22] 1.001     4471     3141
24  beta[23] 1.001     3259     2840
25  beta[24] 1.001     4519     3109
26  beta[25] 1.003     4030     2705
27  beta[26] 1.002      873      924
28  beta[27] 1.001     1570     2180
29  beta[28] 1.004      890      926
30  beta[29] 1.000     1852     2680
31  beta[30] 1.003     1078     1367
32  beta[31] 1.001     2424     2431

Imputation 6 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.96 0.993 1.033 0.985 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001     1134     1773
2    beta[1] 1.003     1062     1558
3    beta[2] 1.004      841      838
4    beta[3] 1.003     2193     2463
5    beta[4] 1.004      996     1253
6    beta[5] 1.004      977     1257
7    beta[6] 1.004     1342     1421
8    beta[7] 1.002     2086     2281
9    beta[8] 1.000     3209     2781
10   beta[9] 1.005      761      836
11  beta[10] 1.000     2041     2284
12  beta[11] 1.003      921     1276
13  beta[12] 1.004      923     1205
14  beta[13] 1.002     1575     1821
15  beta[14] 1.006      789      888
16  beta[15] 1.001     1419     2371
17  beta[16] 1.005      822      930
18  beta[17] 1.000     2195     2499
19  beta[18] 1.005      974     1272
20  beta[19] 1.002     2192     2093
21  beta[20] 1.002     3615     3171
22  beta[21] 1.001     3879     2615
23  beta[22] 1.000     3586     2767
24  beta[23] 1.001     3217     2568
25  beta[24] 1.000     3546     3062
26  beta[25] 1.001     4872     3007
27  beta[26] 1.004      762      826
28  beta[27] 1.002     1221     1672
29  beta[28] 1.005      726      832
30  beta[29] 1.002     1674     2346
31  beta[30] 1.004      840     1236
32  beta[31] 1.001     2122     1877

Imputation 7 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 1.062 0.988 1.016 0.971 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.007     1359     2009
2    beta[1] 1.006     1005     1887
3    beta[2] 1.008      796     1031
4    beta[3] 1.003     1641     1788
5    beta[4] 1.009      948     1936
6    beta[5] 1.007     1070     1436
7    beta[6] 1.003     1168     1576
8    beta[7] 1.004     1555     2505
9    beta[8] 1.001     4196     3018
10   beta[9] 1.011      752     1156
11  beta[10] 1.002     1642     1864
12  beta[11] 1.010     1058     1436
13  beta[12] 1.007      942     1241
14  beta[13] 1.002     1498     2114
15  beta[14] 1.012      735     1117
16  beta[15] 1.005     2146     2175
17  beta[16] 1.010      767     1084
18  beta[17] 1.004     1898     2224
19  beta[18] 1.007     1029     1480
20  beta[19] 1.000     1753     1506
21  beta[20] 1.001     4211     3307
22  beta[21] 1.000     4414     3156
23  beta[22] 1.002     5062     2776
24  beta[23] 1.000     4077     3037
25  beta[24] 1.001     4360     2913
26  beta[25] 1.000     4078     2865
27  beta[26] 1.011      711      981
28  beta[27] 1.007     1205     2303
29  beta[28] 1.010      719     1002
30  beta[29] 1.004     1961     2015
31  beta[30] 1.010      880     1183
32  beta[31] 1.001     1506     1345

Imputation 8 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.954 0.948 0.91 0.878 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.002      951     1345
2    beta[1] 1.003      646      945
3    beta[2] 1.003      702      736
4    beta[3] 1.001     1976     1832
5    beta[4] 1.004      687      887
6    beta[5] 1.002      826      892
7    beta[6] 1.001     1032     1132
8    beta[7] 1.000     2179     2650
9    beta[8] 1.002     4366     2987
10   beta[9] 1.004      592      538
11  beta[10] 1.001     1756     1317
12  beta[11] 1.004      755      946
13  beta[12] 1.004      836      734
14  beta[13] 1.003     1201     1159
15  beta[14] 1.007      669      628
16  beta[15] 1.001     1389     2333
17  beta[16] 1.004      606      622
18  beta[17] 1.001     2859     2745
19  beta[18] 1.004      694      844
20  beta[19] 1.002     2335     2405
21  beta[20] 1.000     5012     2740
22  beta[21] 1.000     4850     3009
23  beta[22] 1.000     4096     2921
24  beta[23] 1.000     3874     2887
25  beta[24] 1.002     4896     2854
26  beta[25] 1.002     4754     2596
27  beta[26] 1.007      620      548
28  beta[27] 1.003      880     1194
29  beta[28] 1.005      589      584
30  beta[29] 1.003     1585     1290
31  beta[30] 1.004      671      620
32  beta[31] 1.002     2205     1909

Imputation 9 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.979 1.043 1.039 0.949 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.001     1328     1970
2    beta[1] 1.005     1155     1395
3    beta[2] 1.001     1009     1226
4    beta[3] 1.000     2110     1915
5    beta[4] 1.002     1116     1403
6    beta[5] 1.000     1018     1311
7    beta[6] 1.001     1791     2316
8    beta[7] 1.001     1975     2209
9    beta[8] 1.001     2994     2532
10   beta[9] 1.001      835     1089
11  beta[10] 1.002     1798     2118
12  beta[11] 1.002      956     1545
13  beta[12] 1.001     1078     1492
14  beta[13] 1.001     1595     2273
15  beta[14] 1.001      940     1081
16  beta[15] 1.002     1188     1283
17  beta[16] 1.002      925     1183
18  beta[17] 1.000     1523     1542
19  beta[18] 1.001     1229     1609
20  beta[19] 1.001     2151     2406
21  beta[20] 1.001     4200     3414
22  beta[21] 1.001     4584     2708
23  beta[22] 1.000     4408     3251
24  beta[23] 1.000     2975     2539
25  beta[24] 1.002     4225     2939
26  beta[25] 1.000     4462     2746
27  beta[26] 1.002      810     1010
28  beta[27] 1.004     1253     1652
29  beta[28] 1.003      804     1109
30  beta[29] 1.000     1414     2076
31  beta[30] 1.002      990     1544
32  beta[31] 1.000     2019     2227

Imputation 10 


Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

EBFMI: 0.842 0.992 1.08 0.961 

   Parameter  Rhat ESS bulk ESS tail
1   alpha[1] 1.002     1157     1600
2    beta[1] 1.002      952     1554
3    beta[2] 1.006      804     1115
4    beta[3] 1.001     1844     2234
5    beta[4] 1.003      950     1387
6    beta[5] 1.004      970     1432
7    beta[6] 1.003     1350     1903
8    beta[7] 1.002     2197     2614
9    beta[8] 1.002     3530     2898
10   beta[9] 1.005      760     1113
11  beta[10] 1.001     1877     2115
12  beta[11] 1.004      830     1505
13  beta[12] 1.005      852     1497
14  beta[13] 1.001     1599     1820
15  beta[14] 1.004      807     1125
16  beta[15] 1.001     1709     2501
17  beta[16] 1.006      710     1030
18  beta[17] 1.001     2409     2431
19  beta[18] 1.003     1100     1413
20  beta[19] 1.002     2257     2317
21  beta[20] 1.000     4735     3050
22  beta[21] 1.001     4507     2333
23  beta[22] 1.001     4939     3254
24  beta[23] 1.000     4240     2993
25  beta[24] 1.003     4650     3059
26  beta[25] 1.000     4247     2854
27  beta[26] 1.009      685      924
28  beta[27] 1.003     1212     1831
29  beta[28] 1.006      688     1042
30  beta[29] 1.001     1938     2736
31  beta[30] 1.005      816     1270
32  beta[31] 1.001     2221     1747
Code
# Look at convergence of only 2 parameters
stanDxplot(bt, c('sex=male', 'pclass=3rd', 'age'), rev=TRUE)

  • Difficult to see but there are 40 traces (10 imputations \(\times\) 4 chains)
  • Diagnostics look good; posterior samples can be trusted
  • Plot posterior densities for select parameters
  • Also shows the 10 densities before stacking
M
Code
plot(bt, c('sex=male', 'pclass=3rd', 'age'), nrow=2)

  • Plot partial effect plots with 0.95 highest posterior density intervals
N
Code
p <- Predict(bt, age, sex, pclass, sibsp=0, fun=plogis, funint=FALSE)
ggplot(p)

  • Compute approximate measure of explained outcome variation for predictors
O
Code
plot(anova(bt))

  • Contrast second class males and females, both at 5 years and 30 years of age, all other things being equal
  • Compute 0.95 HPD interval for the contrast and a joint uncertainty region
  • Compute P(both contrasts < 0), both < -2, and P(either one < 0)
P
Code
k <- contrast(bt, list(sex='male',   age=c(5, 30), pclass='2nd'),
                  list(sex='female', age=c(5, 30), pclass='2nd'),
              cnames = c('age 5 M-F', 'age 30 M-F'))
k
            age Contrast    S.E.    Lower   Upper Pr(Contrast>0)
1age 5 M-F    5  -9.9046 6.79802 -23.5302  1.5059         0.0267
2age 30 M-F  30  -4.9054 0.62556  -6.1423 -3.6994         0.0000

Intervals are 0.95 highest posterior density intervals
Contrast is the posterior mean 
Code
plot(k)

Code
plot(k, bivar=TRUE)                        # assumes an ellipse
plot(k, bivar=TRUE, bivarmethod='kernel')  # doesn't
P <- PostF(k, pr=TRUE)
Contrast names: age 5 M-F, age 30 M-F 
Code
P(`age 5 M-F` <  0 & `age 30 M-F` <  0)    # note backticks
[1] 0.97332
Code
P(`age 5 M-F` < -2 & `age 30 M-F` < -2)
[1] 0.90948
Code
P(`age 5 M-F` <  0 | `age 30 M-F` <  0)
[1] 1

  • Show posterior distribution of predicted survival probability for a 21 year old male in third class with sibsp=0
  • Predict summarizes with a posterior mean (set posterior.summary='median' to use posterior median)
  • Frequentist multiple imputation estimate was 0.1342
Code
pmean <- Predict(bt, age=21, sex='male', pclass='3rd', sibsp=0, parch=0,
                 fun=plogis, funint=FALSE)
pmean
  age  sex pclass sibsp parch    yhat   lower   upper
1  21 male    3rd     0     0 0.14643 0.09747 0.19769

Response variable (y):  

Limits are 0.95 confidence limits
Code
p <- predict(bt,
             data.frame(age=21, sex='male', pclass='3rd', sibsp=0, parch=0),
             posterior.summary='all', fun=plogis, funint=FALSE)
plot(density(p), main='',
     xlab='Pr(survival) For One Covariate Combination')
abline(v=with(pmean, c(yhat, lower, upper)), col=alpha('blue', 0.5))

  • Compute Pr(survival probability > 0.2) for this man
Code
mean(p > 0.2)
[1] 0.0265
R software used
Package Purpose Functions
Hmisc Miscellaneous functions summary,plsmo,naclus,llist,latex, summarize,Dotplot,describe
Hmisc Imputation transcan,impute,fit.mult.impute,aregImpute,stackMI
rms Modeling datadist,lrm,rcs
Accounting for imputation processMI, LRupdate
Model presentation plot,summary,nomogram,Function,anova
Estimation Predict,summary,contrast
Model validation validate,calibrate
rmsb Misc. Bayesian blrm, stanDx,stanDxplot,plot
rpart1 Recursive partitioning rpart

1 Written by Atkinson and Therneau